Odour emission rates from manure treatment/storage systems

2001 ◽  
Vol 44 (9) ◽  
pp. 269-275 ◽  
Author(s):  
I. Edeogu ◽  
J. Feddes ◽  
R. Coleman ◽  
J. Leonard

The effects of agitation, liquid-only manure, depth and time on odour emission rates were investigated. Manure storage tanks were filled to incremental depths every two weeks. At each depth odour samples were collected twice. The second sample was collected seven days after the first. Odour concentration was measured with an olfactometer. Three different pig-manure treatments were investigated. In one treatment, slurry manure in a storage tank was agitated before and during odour sampling. In a second treatment, the settlable solids in manure were removed gravimetrically over 24 hours and liquid manure was pumped to a storage tank. In the third treatment (control), odour samples were collected from unseparated and undisturbed slurry manure. Overall, the odour emission rates in the agitated manure treatment ranged between 0.39 and 1.02 ou s−1 m−2, increased with depth and decreased with time, i.e. after seven days at each depth. In the liquid-only manure treatment, the emission rates ranged between 0.09 and 0.69 ou s−1 m−2, increased with depth but the effect of time was not evident. In the control treatment, the emission rates ranged between 0.20 and 0.66 ou s−1 m−2 and increased with depth on the first odour sampling day but decreased with depth on the second sampling day.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 573
Author(s):  
Sameer Shadeed ◽  
Sandy Alawna

In highly water-poor areas, rooftop rainwater harvesting (RRWH) can be used for a self-sustaining and self-reliant domestic water supply. The designing of an optimal RRWH storage tank is a key parameter to implement a reliable RRWH system. In this study, the optimal size of RRWH storage tanks in the different West Bank governorates was estimated based on monthly (all governorates) and daily (i.e., Nablus) inflow (RRWH) and outflow (domestic water demand, DWD) data. In the estimation of RRWH, five rooftop areas varying between 100 m2 and 300 m2 were selected. Moreover, the reliability of the adopting RRWH system in the different West Bank governorates was tested. Two-time series scenarios were assumed: Scenario 1, S1 (12 months, annual) and scenario 2, S2 (8 months, rainy). As a result, reliable curves for preliminary estimation of optimal RRWH storage tanks for the different West Bank governorates were obtained. Results show that the required storage tank for S1 (annual) is more than that of the S2 (rainy) one. The required storage tank to fulfill DWD is based on the average rooftop area of 150 m2, the average family members of 4.8, and the average DWD of 90 L per capita per day (L/c/d) varies between (75 m3 to 136 m3) and (24 m3 to 84 m3) for S2 for the different West Bank governorates. Further, it is found that the optimal RRWH tank size for the 150 m2 rooftop ranges between 20 m3 (in Jericho) to 75 m3 (in Salfit and Nablus) and between 20 m3 (in Jericho) to 51 m3 (in Jerusalem) for S1 and S2 scenarios, respectively. Finally, results show that the implementation of an RRWH system for a rooftop area of 150 m2 and family members of 4.8 is reliable for all of the West Bank governorates except Jericho. Whereas, the reliability doesn’t exceed 19% for the two scenarios. However, the reduction of DWDv is highly affecting the reliability of adopting RRWH systems in Jericho (the least rainfall governorate). For instance, a family DWDv of 3.2 m3/month (25% of the average family DWDv in the West Bank) will increase the reliability at a rooftop area of 150 m2 to 51% and 76% for S1 and S2, respectively.


2013 ◽  
Vol 671-674 ◽  
pp. 1399-1402
Author(s):  
Ying Sun ◽  
Jian Gang Sun ◽  
Li Fu Cui

To study the impact of floating roof on seismic response of vertical storage tank structure system subjected to seismic excitation, select 150000m3 storage tanks as research object, and the finite element analysis model of storage tanks with and without floating roof were established respectively. The seismic response of these two types of structure in different site conditions and seismic intensity were calculated and the numerical solutions were compared. The results show that floating roof has little impact on base shear and base moment in different site conditions and seismic intensity. Floating roof can effectively reduce the sloshing wave height. The influence of floating roof on dynamic fluid pressure decreases with the increase of seismic intensity, which is less affected by ground conditions.


2012 ◽  
Vol 80 (2) ◽  
pp. 427-440 ◽  
Author(s):  
Maialen Barret ◽  
Nathalie Gagnon ◽  
Bruno Morissette ◽  
Edward Topp ◽  
Martin Kalmokoff ◽  
...  

AGROFOR ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
S.F. EL-SAYED ◽  
A.A. GAHRIB ◽  
Rasha R. EID

This investigation was carried out during the two summer seasons of 2015 and2016 in sandy soil on potato culitvar "Sante" to study the effect of using 100%compost (15 t/fed.) and 50% compost + nitrogen fixing bacteria (Azotobacter, andPseudomonas alone or together) on potato yield and quality as compared to theconventional mineral fertilization (120-75-150 kg/fed. NPK + 5 toncompost/fed.(control)). No significant differences in tubers yield/fed. were detectedbetween mineral fertilization (control) and using 100% compost (15t/fed).However, control treatment significantly produced a high yield per feddan,more than using 50% compost + any biofertilizer treatment.Using composttreatment at 15 t/fed.execeed all biofertilizer treatments in marketable yield in bothseasons, but without significant differences as compared with mineral fertilization(control).No significant differences in tuber dray matter and content of starch intuber were found between using compost treatment at 15 ton/fed. and mineralfertilization treatment (control)in both seasons. Nevertheless, application of 50%compost+ 4 applications of Azotobacter and Pseudomonas had the highest tuberconcentrations of starch and nitrogen with significant differences as compared withthe mineral fertilization.Using50% compost + 4 applications of Azotobacter orPseudomonas or both (Azotobacter + Pseudomonas )and application of 100%compost caused producing potato tubers with the lowest concentration of nitratewith significant differences as compared with the mineral fertilization. Nosignificant differences were detected between mineral and organic fertilizersconcerning P and K concentrations in tubers.


1987 ◽  
Vol 38 (4) ◽  
pp. 681 ◽  
Author(s):  
AS Hodgson ◽  
DA MacLeod

Foliar-applied nitrogen (N) fertilizer was investigated as a means of ameliorating the damage to cotton of waterlogging associated with extended furrow irrigation of a cracking grey clay. Dissolved urea was applied at 0, 5, 10 and 20 kg N ha-1 to the cotton foliage one day before furrow irrigations lasting 4, 8, 16 and 32 h. Treatments were repeated at three crop irrigations. Storms following the first two irrigations delayed the recovery from waterlogging and reduced treatment differences. However, foliar-applied N significantly increased late square and green boll numbers after the third irrigation, and produced more open bolls and heavier lint yields than the control treatment at harvest. Lint yields increased by 2.8, 5.9, 8.4 and up to 10.5 kg ha-1 per kg of foliar N applied before irrigations lasting 4, 8, 16 and 32 h, respectively. From this interaction it was concluded that foliar-applied N ameliorated the effects of waterlogging. Nevertheless, in the most severe waterlogging treatment, yield response to foliar N reached a limit, indicating that some other factor had become limiting.


Author(s):  
Herbert Marsh

This is a discussion of the facets of cryogenic storage tank design directed toward those who have only limited experience in the field. Design considerations as to cost, suitability of materials for the temperatures and pressures involved, configuration of inner vessels and jackets, support systems, and types of insulation, evacuated and nonevacuated, for both shop-built and fielderected vessels are discussed in brief. The potential requirements for cryogenic storage for industrial applications are listed. Military applications for both ground and air-borne use are excluded as these involve unusual design conditions foreign to the usual industrial installation.


1995 ◽  
Vol 38 (6) ◽  
pp. 1881-1886 ◽  
Author(s):  
Q. Liu ◽  
D. S. Bundy ◽  
S. J. Hoff

Author(s):  
Zhou Fang ◽  
Weiwei Hu ◽  
Deyu Liu ◽  
Guanghai Li ◽  
Zhe Wang

The fire process was simulated by the heat treatment to the Steel SPV490 of atmospheric storage tank, thereby obtaining the metal specimens in different fire temperature, holding time, and cooling modes. And as the temperature increases, the microscopic structure of Steel SPV490 changes under different working conditions, which could be shown in optical microstructure pictures after doing the interception, inlay, polishing, finishing to the specimens. The result shows that, the mechanical properties of the Steel SPV490 for storage tank changes as the temperature rising from the microscopic view. Nodulizing of the cementite in pearlite occurs, and the strength decreases when the high strength steel SPV490 of large atmospheric storage tanks under air cooling condition below 700 °C, however, it equivalents to the normalizing process, as the sorbite occurs in the steel, and the strength increases a bit when the temperature is above 900 °C. The water-cooling of steel SPV490 above 900 °C equivalents to the process of quenching. The occurrence of martensitic substantially increases the strength and the brittleness, and the elongation decreases rapidly.


Sign in / Sign up

Export Citation Format

Share Document