Discovery of novel pyruvate dehydrogenase kinases inhibitors by screening of an in-house small molecule library for anti-lung cancer therapeutics

2019 ◽  
Vol 29 (2) ◽  
pp. 291-296
Author(s):  
Fuyun Guo ◽  
Shufen Zhao ◽  
Xiao'e Li
2017 ◽  
Author(s):  
Carolyn Bertozzi ◽  
Fred Tomlin ◽  
Ulla Gerling-Driessen ◽  
Yi-Chang Liu ◽  
Ryan Flynn ◽  
...  

We discovered that the proteostasis modulating transcription factor Nrf1 requires cytosolic de-N-glycosylation by the N-glycanase NGly1 as part of its activation mechanism. Through a covalent small molecule library screen, we discovered an inhibitor of NGly1 that blocks Nrf1 activation in cells and potentiates the activity of proteasome inhibitor cancer drugs. The requirement of NGly1 for Nrf1 activity likely underlies several pathologies associated with a rare hereditary deficiency in NGly1.


2020 ◽  
Vol 15 (2) ◽  
pp. S31-S32
Author(s):  
F.D. Johnson ◽  
S. Jansen ◽  
A. Liu ◽  
C. Brandstädter ◽  
D. Lu ◽  
...  

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Kaili Long ◽  
Lili Gu ◽  
Lulu Li ◽  
Ziyu Zhang ◽  
Enjie Li ◽  
...  

AbstractApurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.


The Analyst ◽  
2015 ◽  
Vol 140 (4) ◽  
pp. 1260-1264 ◽  
Author(s):  
Yanhong Zhu ◽  
Guangfeng Wang ◽  
Liang Sha ◽  
Yuwei Qiu ◽  
Hong Jiang ◽  
...  

Development of strategies for the sensitive and selective detection of the folate receptor (FR) that are simple and low cost is of great importance for assessing cancer therapeutics due to its crucial role in physiological, pharmacological and pathological processes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 630
Author(s):  
Hawon Yoo ◽  
Seul-Ki Choi ◽  
Jaeok Lee ◽  
So Hyeon Park ◽  
You Na Park ◽  
...  

Relationships between heat shock protein 27 (HSP27) and cancer aggressiveness, metastasis, drug resistance, and poor patient outcomes in various cancer types including non-small cell lung cancer (NSCLC) were reported, and inhibition of HSP27 expression is suggested to be a possible strategy for cancer therapy. Unlike HSP90 or HSP70, HSP27 does not have an ATP-binding pocket, and no effective HSP27 inhibitors have been identified. Previously, NSCLC cancer cells were sensitized to radiation and chemotherapy when co-treated with small molecule HSP27 functional inhibitors such as zerumbone (ZER), SW15, and J2 that can induce abnormal cross-linked HSP27 dimer. In this study, cancer inhibition effects of NA49, a chromenone compound with better solubility, longer circulation time, and less toxicity than J2, were examined in combination with anticancer drugs such as cisplatin and gefitinib in NSCLC cell lines. When the cytotoxic drug cisplatin was treated in combination with NA49 in epidermal growth factor receptors (EGFRs) WT cell lines, sensitization was induced in an HSP27 expression-dependent manner. With gefitinib treatment, NA49 showed increased combination effects in both EGFR WT and Mut cell lines, also with HSP27 expression-dependent patterns. Moreover, NA49 induced sensitization in EGFR Mut cells with a secondary mutation of T790M when combined with gefitinib. Augmented tumor growth inhibition was shown with the combination of cisplatin or gefitinib and NA49 in nude mouse xenograft models. These results suggest the combination of HSP27 inhibitor NA49 and anticancer agents as a candidate for overcoming HSP27-mediated drug resistance in NSCLC patients.


2020 ◽  
Author(s):  
Rachana Garg ◽  
Mariana Cooke ◽  
Shaofei Wang ◽  
Fernando Benavides ◽  
Martin C. Abba ◽  
...  

ABSTRACTNon-small cell lung cancer (NSCLC), the most frequent subtype of lung cancer, remains a highly lethal malignancy and one of the leading causes of cancer deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histological form of NSCLC. In this study, we examined the role of PKCε, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Notably, database analysis revealed an association between PKCε expression and poor outcome in lung adenocarcinoma patients specifically having KRAS mutation. By generating a PKCε-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D;PKCε−/− mice) we were able to demonstrate the requirement of PKCε for Kras-driven lung tumorigenesis in vivo, which is consistent with the impaired transformed growth observed in PKCε-deficient KRAS-dependent NSCLC cells. Moreover, PKCε-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA-Seq revealed little overlapping for PKCε and KRAS in the control of genes/biological pathways relevant in NSCLC, suggesting that a permissive role of PKCε in KRAS-driven lung tumorigenesis may involve non-redundant mechanisms. Our results thus highlight the relevance and potential of targeting PKCε for lung cancer therapeutics.


Author(s):  
Jennifer S. Temel ◽  
Laura A. Petrillo ◽  
Joseph A. Greer

The evidence base demonstrating the benefits of an early focus on palliative care for patients with serious cancers, including advanced lung cancer, is substantial. Early involvement of specialty-trained palliative care clinicians in the care of patients with advanced lung cancer improves patient-reported outcomes, such as quality of life, and health care delivery, including hospice utilization. Since the time that many of these palliative care trials were conducted, the paradigm of cancer care for many cancers, including lung cancer, has changed dramatically. The majority of patients with advanced lung cancer are now treated with immune checkpoint inhibitors or targeted therapies, both of which have had a significant impact on patient's experience and outcomes. With this changing landscape of lung cancer therapeutics, patients are facing new and different challenges, including dealing with novel side effect profiles and coping with greater uncertainty regarding their prognosis. Patients who are living longer with their advanced cancer also struggle with how to address survivorship issues, such as sexual health and exercise, and decision making about end-of-life care. Although palliative care clinicians remain well-suited to address these care needs, they may need to learn new skills to support patients treated with novel therapies. Additionally, as the experience of patients with advanced lung cancer is becoming more varied and individualized, palliative care research interventions and clinical programs should also be delivered in a patient-centered manner to best meet patient's needs and improve their outcomes. Tailored and technology-based palliative care interventions are promising strategies for delivering patient-centered palliative care.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1141 ◽  
Author(s):  
Anastasios Gkountakos ◽  
Giulia Sartori ◽  
Italia Falcone ◽  
Geny Piro ◽  
Ludovica Ciuffreda ◽  
...  

Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.


2019 ◽  
Vol 383 ◽  
pp. 114771
Author(s):  
Ognian C. Ikonomov ◽  
Diego Sbrissa ◽  
Assia Shisheva

Sign in / Sign up

Export Citation Format

Share Document