A method to follow tumor growth and tumor induced bone loss simultaneously over time, in vivo, using whole body bioluminescence fluorescence imaging

Bone ◽  
2011 ◽  
Vol 48 (1) ◽  
pp. S49-S50
Author(s):  
T.J.A. Snoeks* ◽  
A. Khmelinskii ◽  
I. Que ◽  
B. Lelieveldt ◽  
E.L. Kaijzel ◽  
...  
Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4149-4156 ◽  
Author(s):  
Martin Ullrich ◽  
Ralf Bergmann ◽  
Mirko Peitzsch ◽  
Marc Cartellieri ◽  
Nan Qin ◽  
...  

Abstract Pheochromocytoma (PHEO) is a rare but potentially lethal neuroendocrine tumor arising from catecholamine-producing chromaffin cells. Especially for metastatic PHEO, the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent PHEO models, reliable quantification of multiple organ lesions depends on dedicated small-animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of PHEO. We generated an mCherry-expressing mouse PHEO cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth–dependent increases (P < .001) over the 30 days of monitoring post-tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (P < .001) and strongly with tumor fluorescence intensity (rs = 0.946), and urinary outputs of dopamine (rs = 0.952), methoxytyramine (rs = 0.947), norepinephrine (rs = 0.756), and normetanephrine (rs = 0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that mouse pheochromocytoma (MPC)-mCherry cell tumors are functionally similar to human PHEO. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this sc mouse model of PHEO. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 635-635
Author(s):  
Yang Yang ◽  
Veronica MacLeod ◽  
Manali Bendre ◽  
Yan Huang ◽  
Allison M. Theus ◽  
...  

Abstract Although widespread skeletal dissemination is a critical step in the progression of myeloma, little is known regarding mechanisms that control this process. High levels of the syndecan-1 heparan sulfate proteoglycan are present in the myeloma microenvironment where they bind numerous growth factors (e.g., HGF, FGF-2) that control myeloma growth, angiogenesis and dissemination. Heparanase-1 (HPSE1) is an enzyme that cleaves heparan sulfate chains of proteoglycans and thus may regulate heparan-binding growth factor activity. We have previously demonstrated that human myeloma cells express heparanase and that active enzyme is present in the plasma harvested from the marrow of myeloma patients (Cancer Res. 63: 8749–56). In the present study, experiments were performed to determine the effects of enhanced expression of heparanase on myeloma tumor growth and dissemination in vivo. The human myeloma cell line, CAG, was transfected with human HPSE1 cDNA (CAGHPSE1) or with corresponding vector only (CAGNeo). The transfected cells were injected either directly into the tibia or subcutaneously into the flank of severe combined immune deficient (SCID) mice and tumor growth rate, microvessel density and metastasis to bone were analyzed. We discovered that expression of heparanase: (i) accelerates the initial growth of the primary tumor, (ii) increases whole body tumor burden as compared to controls, and (iii) enhances both the number and size of microvessels within the primary tumor. In addition, enhanced expression of heparanase dramatically upregulates spontaneous metastasis of subcutaneously-injected myeloma cells to bone (95% in mice bearing CAGHPSE1 tumors, n = 21; as compared to 6% in mice bearing CAGNeo tumors, n=16). When tumor was injected directly into the tibia, 100% of the mice bearing CAGHPSE1 tumor cells had metastases within the contralateral femur (n=10) while only 29% of the mice bearing CAGNeo tumor had metastases (n=7). These studies describe a novel experimental animal model for examining the spontaneous metastasis of bone-homing tumors and indicate that heparanase is a critical determinant of myeloma dissemination and growth in vivo. Thus, therapeutic modulation of heparanase expression or function may be of value in the treatment of myeloma and other cancers that metastasize to bone.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47927 ◽  
Author(s):  
Henrike Caysa ◽  
Stefan Hoffmann ◽  
Jana Luetzkendorf ◽  
Lutz Peter Mueller ◽  
Susanne Unverzagt ◽  
...  

1980 ◽  
Vol 6 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Harold Moroson ◽  
Melvin Schechter ◽  
Thomas Herskovic ◽  
Ilene Kurzman ◽  
Marvin Rotman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jack Leslie ◽  
Stuart M. Robinson ◽  
Fiona Oakley ◽  
Saimir Luli

AbstractAdvances in fluorescence imaging coupled with the generation of near infrared probes have significantly improved the capabilities of non-invasive, real-time imaging in whole animals. In this study we were able to overcome a limitation of in vivo fluorescence imaging and have established a dual cell tracking method where two different cell types can be monitored according to the spectral signature of the cell labelling fluorophore. Using a mouse model of acute liver injury, we have characterised the in vivo migration patterns of wild type and transgenic neutrophils with impaired chemotaxis. Here, we were able to demonstrate that IVIS provides a sensitive multiplexing technology to differentiate two different cell populations based on the spectral signature of the cell labelling fluorophores. This spectral unmixing methodology has the potential to uncover multidimensional cellular interactions involved in many diseases such as fibrosis and cancer. In vivo spectral un-mixing provides a useful tool for monitoring multiple biological process in real-time in the same animal.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4769
Author(s):  
Yihang Guo ◽  
Honghong Wang ◽  
Jeni L. Gerberich ◽  
Samuel O. Odutola ◽  
Amanda K. Charlton-Sevcik ◽  
...  

The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3164-3164
Author(s):  
Fani Ziouti ◽  
Maximilian Rummler ◽  
Andreas Brandl ◽  
Andreas Beilhack ◽  
Maureen Lynch ◽  
...  

Abstract Osteolytic bone disease (BD) is a hallmark of multiple myeloma (MM) with tumor cells in the bone marrow shifting the balance of the bone remodeling process towards massive bone resorption. As a result, patients develop devastating osteolytic lesions that lead to non-healing bone fractures and pain, affecting life quality and mortality rates. Bones have the capacity to adapt mass and structure to mechanical stimuli, as dramatically seen in young tennis athletes with muscle-bone asymmetries in the playing arm. We have previously shown that tibial mechanical loading rescued bone loss in our murine MOPC315.BM MM model with an advanced osteolytic phenotype. Here, we hypothesize that mechanical strain (1) modulates the bone microenvironment and (2) has antitumor activity in mice. (1) We determined bone formation and bone resorption parameters by time-lapsed microCT analysis to show how skeletal mechanical stimuli control MM bone disease (MMBD) progression over time. (2) To monitor tumor progression, we used non-invasive bioluminescence imaging (BLI) and enzyme-linked immunosorbent assay (ELISA) for detection of MOPC315.BM specific immunoglobulin A (IgA) levels. In our in vivo loading study, we injected MOPC315.BM cells intratibially (i.t.) in BALB/c mice to establish MMBD (n=17) and used PBS-injected (n=13) as well as noninjected mice (n=8) as controls. Eight (MM), seven (PBS) and 8 (noninjected) mice received compressive tibial loading for three weeks while nine (MM) and six (PBS) mice served as nonloaded controls. The bone remodeling response to mechanical loading was investigated by longitudinal in vivo microCT imaging performed every 5 days (at day 13, 18, 23, 28, and 33 after i.t. injection). MicroCT images from day 33 were geometrically registered onto images of day 13 and resampled into the same coordinate system using Amira and scripts written in Matlab for post-processing. Normalized newly mineralized and eroded bone volume (MV/BV, EV/BV), normalized formed and eroded bone surface area (MS/BS, ES/BS), mineralized thickness (MTh) and eroded depth (ED) were quantified. ANOVA was performed to examine the effect of loading and injection. Loading significantly increased the periosteal MV/BV, periosteal and endosteal MS/BS as well as decreased the periosteal EV/BV and periosteal and endocortical ES/BS. Endosteal MV/BV or EV/BV were not affected, which may be due to differences in the local strain environment at the two surfaces. In addition, mechanical stimuli did not influence ED, but led to diminished periosteal EV/BV and periosteal ES/BS suggesting fewer resorption sites in tibiae subjected to loading. Injection significantly affected periosteal and endosteal bone formation and resorption (Fig.1). Significant increases in cortical bone mass of loaded MM mice were accompanied by decreases in tumor load as evidenced by MOPC315.BM specific IgA levels (Fig. 2A). Interestingly, quantification of tibial and whole body bioluminescence signal intensities revealed controlled tumor growth in the loaded left tibia and a further delay of tumor cell dissemination throughout body of MM mice (Fig. 2B). Our data provide evidence that skeletal mechanical stimuli have anti-myeloma effects and rescue osteolytic bone loss in MMBD. The anabolic response to mechanical loads outweighs the anti-resorptive effect of MM cells, suggesting a combination of loading with bone resorption inhibitors in future therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1105-1105
Author(s):  
Jagannath Pal ◽  
Dheeraj Pelluru ◽  
Mariateresa Fulciniti ◽  
Samir B Amin ◽  
Leutz Buon ◽  
...  

Abstract Abstract 1105 Poster Board I-127 Genetic recombination plays a critical role in telomere maintenance, chromosomal translocation, and gene amplification, and may therefore underlie the chromosomal aberrations observed with high frequency in number of malignancies. The molecular mechanism/s inducing genomic instability remains ill-defined and their elucidation may provide methods to prevent tumor progression and development of drug resistance. Our earlier work has demonstrated that homologous recombination (HR) activity is elevated in multiple myeloma (MM) cells and leads to increased rate of mutation and progressive accumulation of genetic variation over time. We have further demonstrated that the inhibition of HR activity in MM cells by siRNAs targeting recombinase leads to significant reduction in the acquisition of new genetic changes in the genome; and conversely, induction of HR activity leads to significant elevation in the number of new mutations over time, and development of drug resistance in MM cells. Here we have evaluated a PI3K inhibitor Wortmaninin which has significant inhibitory activity against both HR and non-HR (nHR) pathways. Exposure of MM cells (OPM1, ARP and RPMI 8226) to wortmannin (WM) led to reduced expression of recombinase (hsRAD51) and nearly complete inhibition of HR activity, within 24 hrs as determined by a plasmid based assay in which generation of active gene product by recombination is measured. Similarly nHR was evaluated by measuring generation of intact gene product from a linearized plasmid. We evaluated effect of WM on nHR by 3 hours preincubation before transfecting the plasmid followed by cell culture for 72 hrs at 37° C. Cells were harvested and analyzed for nHR as previously described. Treatment with WM led to >40% reduction in nHR, indicating that WM affects both HR and NHR pathways. Downregulation of these pathways by wortmannin was also associated with a reduced growth rate of myeloma cells in culture by 20-25% at 48 hours. Importantly, WM treatment markedly decreased the acquisition of new genomic changes in MM as measured by genome-wide loss of heterozygosity assay as an indicator of genomic stability. To evaluate the impact of WM on in vivo tumor growth, OPM1 cells were injected subcutaneously in SCID mice and following appearance of palpable tumors, mice were treated with WM at 0.75 mg/kg, injecting daily intraperitoneally. Treatment with WM was associated with almost complete inhibition of tumor growth in vivo. Long term exposure of myeloma cells to WM was consistently associated with reduced telomere length, probably by blocking HR dependent ALT pathway. These data identifies dysregulated recombination activity as a key mediator of DNA instability and progression of MM, and WM as a potential therapeutic agent for prevention of myeloma progression and possibly drug resistance. Disclosures Anderson: Millenium: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Munshi:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis : Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


2020 ◽  
Vol 6 (19) ◽  
pp. eaba1269 ◽  
Author(s):  
Nicholas C. Hill ◽  
Jian Wei Tay ◽  
Sabina Altus ◽  
David M. Bortz ◽  
Jeffrey C. Cameron

Carboxysomes, prototypical bacterial microcompartments (BMCs) found in cyanobacteria, are large (~1 GDa) and essential protein complexes that enhance CO2 fixation. While carboxysome biogenesis has been elucidated, the activity dynamics, lifetime, and degradation of these structures have not been investigated, owing to the inability of tracking individual BMCs over time in vivo. We have developed a fluorescence-imaging platform to simultaneously measure carboxysome number, position, and activity over time in a growing cyanobacterial population, allowing individual carboxysomes to be clustered on the basis of activity and spatial dynamics. We have demonstrated both BMC degradation, characterized by abrupt activity loss followed by polar recruitment of the deactivated complex, and a subclass of ultraproductive carboxysomes. Together, our results reveal the BMC life cycle after biogenesis and describe the first method for measuring activity of single BMCs in vivo.


Sign in / Sign up

Export Citation Format

Share Document