scholarly journals Height, but not binding epitope, affects the potency of synthetic TCR agonists

2021 ◽  
Vol 120 (18) ◽  
pp. 3869-3880
Author(s):  
Kiera B. Wilhelm ◽  
Shumpei Morita ◽  
Darren B. McAffee ◽  
Sungi Kim ◽  
Mark K. O’Dair ◽  
...  
Keyword(s):  
2021 ◽  
Vol 22 (11) ◽  
pp. 5989
Author(s):  
Bilal Ahmad ◽  
Maria Batool ◽  
Moon Suk Kim ◽  
Sangdun Choi

Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody–antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.


2015 ◽  
Vol 2 ◽  
pp. 15040 ◽  
Author(s):  
Qiang Wang ◽  
Martin Lock ◽  
Andrew J Prongay ◽  
Mauricio R Alvira ◽  
Boris Petkov ◽  
...  

FEBS Journal ◽  
2006 ◽  
Vol 273 (9) ◽  
pp. 1966-1974 ◽  
Author(s):  
Brian E. Kane ◽  
Marcelo J. Nieto ◽  
Christopher R. McCurdy ◽  
David M. Ferguson

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-35
Author(s):  
Julia Skokowa ◽  
Mohammad Elgamacy ◽  
Patrick Müller

Protein therapeutics are clinically developed and used as minorly engineered forms of their natural templates. This direct adoption of natural proteins in therapeutic contexts very frequently faces major challenges, including instability, poor solubility, and aggregation, which may result in undesired clinical outcomes. In contrast to classical protein engineering techniques, de novo protein design enables the introduction of radical sequence and structure manipulations, which can be used to address these challenges. In this work, we test the utility of two different design strategies to design novel granulopoietic proteins, using structural information from human granulocyte-colony stimulating factor (hG-CSF) as a template. The two strategies are: (1) An epitope rescaffolding where we migrate a tertiary structural epitope to simpler, idealised, proteins scaffolds (Fig. 1A-C), and (2) a topological refactoring strategy, where we change the protein fold by rearranging connections across the secondary structures and optimised the designed sequence of the new fold (Fig. 1A,D,E). Testing only eight designs, we obtained novel granulopoietic proteins that bind to the G-CSF receptor, have nanomolar activity in cell-based assays, and were highly thermostable and protease-resistant. NMR structure determination showed three designs to match their designed coordinates within less than 2.5 Å. While the designs possessed starkly different sequence and structure from the native G-CSF, they showed very specific activity in differentiating primary human haematopoietic stem cells into fully mature granulocytes. Morever, one design shows significant and specific activity in vivo in zebrafish and mice. These results are prospectively directing us to investigate the role of dimerisation geometry of G-GCSF receptor on activation magnitude and downstream signalling pathways. More broadly, the results also motivate our ongoing work on to design other heamatopoietic agents. In conclusion, our findings highlight the utility of computational protein design as a highly effective and guided means for discovering nover receptor modulators, and to obtain new mechanistic information about the target molecule. Figure 1. Two different strategies to generate superfolding G-CSF designs. (A) X-ray structure of G-CSF (orange) bound to its cognate receptor (red) through its binding epitope (blue). According to the epitope rescaffolding strategy, (B) the critical binding epitope residues were disembodied and used as a geometric search query against the entire Protein Data Bank (PDB) to retrieve structurally compatible scaffolds. The top six compatible scaffolds structures are shown in cartoon representation. (C) The top two templates chosen for sequence design, were a de novo designed coiled-coil and a four-helix bundle with unknown function. The binding epitopes were grafted, and the scaffolds were optimised to rigidly host the guest epitope. (D-E) According to the topological refactoring strategy (D) the topology of the native G-CSF was rewired from around the fixed binding epitope, and then was further mutated to idealise the core residues (blue volume (E)) and residues distal from the binding epitope (orange crust (E)). Both strategies aimed at simplifying the topology, reducing the size, and rigidifying the bound epitope conformation through alternate means. Figure 1 Disclosures No relevant conflicts of interest to declare.


Author(s):  
Mingliang Ma ◽  
Huan Qi ◽  
Chuansheng Hu ◽  
Zhaowei Xu ◽  
Fanlin Wu ◽  
...  

Abstract PD-1 plays an important role as an immune checkpoint. Sintilimab is a newly approved PD-1 antibody for cancer immunotherapy with an unknown binding epitope on PD-1. In this study, to elucidate the molecular mechanism by which sintilimab blocks PD-1 activation, we applied Antibody binding epitope Mapping (AbMap) to identify the binding epitope of sintilimab. An epitope was successfully identified, i.e. SLAPKA, aa 127–132. By constructing a series of point mutations, the dominant residues S127, L128, A129, P130, and A132 of PD-1 were further validated by western blot analysis, biolayer interferometry, and flow cytometry. Structural analysis showed that the epitope is partially within the binding interface of PD-1 and PD-L1, and this epitope also partially overlaps with that of nivolumab and pembrolizumab. These results demonstrate that sintilimab can attenuate PD-1 activation by directly competing with the interaction between PD-1 and PD-L1 through binding with the key residues of the FG loop on PD-1. This study also demonstrates the high efficiency and accuracy of AbMap for determining the binding epitope of therapeutic antibodies.


2020 ◽  
Vol 11 ◽  
Author(s):  
Andrew G. Diamos ◽  
Mary D. Pardhe ◽  
Haiyan Sun ◽  
Joseph G. L. Hunter ◽  
Jacquelyn Kilbourne ◽  
...  

Therapeutics based on fusing a protein of interest to the IgG Fc domain have been enormously successful, though fewer studies have investigated the vaccine potential of IgG fusions. In this study, we systematically compared the key properties of seven different plant-made human IgG1 fusion vaccine candidates using Zika virus (ZIKV) envelope domain III (ZE3) as a model antigen. Complement protein C1q binding of the IgG fusions was enhanced by: 1) antigen fusion to the IgG N-terminus; 2) removal of the IgG light chain or Fab regions; 3) addition of hexamer-inducing mutations in the IgG Fc; 4) adding a self-binding epitope tag to create recombinant immune complexes (RIC); or 5) producing IgG fusions in plants that lack plant-specific β1,2-linked xylose and α1,3-linked fucose N-linked glycans. We also characterized the expression, solubility, and stability of the IgG fusions. By optimizing immune complex formation, a potently immunogenic vaccine candidate with improved solubility and high stability was produced at 1.5 mg IgG fusion per g leaf fresh weight. In mice, the IgG fusions elicited high titers of Zika-specific antibodies which neutralized ZIKV using only two doses without adjuvant, reaching up to 150-fold higher antibody titers than ZE3 antigen alone. We anticipate these findings will be broadly applicable to the creation of other vaccines and antibody-based therapeutics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nishant Mehta ◽  
Sainiteesh Maddineni ◽  
Ryan L. Kelly ◽  
Robert B. Lee ◽  
Sean A. Hunter ◽  
...  

Abstract V-domain immunoglobulin (Ig) suppressor of T cell activation (VISTA) is an immune checkpoint that maintains peripheral T cell quiescence and inhibits anti-tumor immune responses. VISTA functions by dampening the interaction between myeloid cells and T cells, orthogonal to PD-1 and other checkpoints of the tumor-T cell signaling axis. Here, we report the use of yeast surface display to engineer an anti-VISTA antibody that binds with high affinity to mouse, human, and cynomolgus monkey VISTA. Our anti-VISTA antibody (SG7) inhibits VISTA function and blocks purported interactions with both PSGL-1 and VSIG3 proteins. SG7 binds a unique epitope on the surface of VISTA, which partially overlaps with other clinically relevant antibodies. As a monotherapy, and to a greater extent as a combination with anti-PD1, SG7 slows tumor growth in multiple syngeneic mouse models. SG7 is a promising clinical candidate that can be tested in fully immunocompetent mouse models and its binding epitope can be used for future campaigns to develop species cross-reactive inhibitors of VISTA.


Sign in / Sign up

Export Citation Format

Share Document