scholarly journals Correlating Single-molecule Rupture Mechanics with Cell Population Adhesion by Yeast Display of Monomeric Streptavidin

2021 ◽  
pp. 100035
Author(s):  
Mariana Sá Santos ◽  
Haipei Liu ◽  
Valentin Schittny ◽  
Rosario Vanella ◽  
Michael A. Nash
2015 ◽  
Vol 184 ◽  
pp. 401-424 ◽  
Author(s):  
Adam J. M. Wollman ◽  
Mark C. Leake

We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on modelEscherichia colibacteria andSaccharomyces cerevisiaebudding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism ofS. cerevisiaeis a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP)viachromosomal integration at physiological expression levels in livingS. cerevisiaecells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of protein concentrations in single functional cells, and enables the distributions of concentrations across a cell population to be measured. This could be useful in investigating several cellular processes that are mediated by proteins, especially where changes in protein concentration in a single cell in response to changes in the extracellular chemical environment are subtle and rapid and may be smaller than the variability across a cell population.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 253 ◽  
Author(s):  
Anne Deslattes Mays ◽  
Marcel Schmidt ◽  
Garrett Graham ◽  
Elizabeth Tseng ◽  
Primo Baybayan ◽  
...  

Hematopoietic cells are continuously replenished from progenitor cells that reside in thebone marrow. To evaluate molecular changes during this process, we analyzed the transcriptomesof freshly harvested human bone marrow progenitor (lineage-negative) and differentiated (lineagepositive)cells by single-molecule real-time (SMRT) full-length RNA-sequencing. This analysisrevealed a ~5-fold higher number of transcript isoforms than previously detected and showed adistinct composition of individual transcript isoforms characteristic for bone marrowsubpopulations. A detailed analysis of messenger RNA (mRNA) isoforms transcribed from theANXA1 and EEF1A1 loci confirmed their distinct composition. The expression of proteins predictedfrom the transcriptome analysis was evaluated by mass spectrometry and validated previouslyunknown protein isoforms predicted e.g., for EEF1A1. These protein isoforms distinguished thelineage negative cell population from the lineage positive cell population. Finally, transcriptisoforms expressed from paralogous gene loci (e.g., CFD, GATA2, HLA-A, B, and C) alsodistinguished cell subpopulations but were only detectable by full-length RNA sequencing. Thus,qualitatively distinct transcript isoforms from individual genomic loci separate bone marrow cellsubpopulations indicating complex transcriptional regulation and protein isoform generationduring hematopoiesis.


Author(s):  
J. Russo ◽  
W. Isenberg ◽  
M. Ireland ◽  
I.H. Russo

The induction of rat mammary carcinoma by the chemical carcinogen DMBA is used as a model for the study of the human disease (1). We previously described the histochemical changes that occur in the mammary gland of DMBA treated animals before the earliest manifested histological change, the intraductal proliferation (IDP), was observed (2). In the present work, we demonstrate that a change in the stable cell population found in the resting mammary gland occurs after carcinogen administration.Fifty-five day old Sprague-Dawley virgin female rats were inoculated intragastrically with 20mg of 7,12-dimethylbenz(a)anthracene (DMBA) in 1ml sesame oil. Non-inoculated, age-matched females were used as controls. Mammary glands from control and inoculated rats were removed weekly from the time of inoculation until 60 days post-inoculation. For electron microscopy, the glands were immersed in Karnovsky's fixative, post-fixed in 1% OsO4, dehydrated, and embedded in an Epon-Araldite mixture. Thick (lμ) sections were stained with 1% toluidine blue and were used for selecting areas for ultrastructural study.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


Author(s):  
George C. Ruben ◽  
William Krakow

Tobacco primary cell wall and normal bacterial Acetobacter xylinum cellulose formation produced a 36.8±3Å triple-stranded left-hand helical microfibril in freeze-dried Pt-C replicas and in negatively stained preparations for TEM. As three submicrofibril strands exit the wall of Axylinum , they twist together to form a left-hand helical microfibril. This process is driven by the left-hand helical structure of the submicrofibril and by cellulose synthesis. That is, as the submicrofibril is elongating at the wall, it is also being left-hand twisted and twisted together with two other submicrofibrils. The submicrofibril appears to have the dimensions of a nine (l-4)-ß-D-glucan parallel chain crystalline unit whose long, 23Å, and short, 19Å, diagonals form major and minor left-handed axial surface ridges every 36Å.The computer generated optical diffraction of this model and its corresponding image have been compared. The submicrofibril model was used to construct a microfibril model. This model and corresponding microfibril images have also been optically diffracted and comparedIn this paper we compare two less complex microfibril models. The first model (Fig. 1a) is constructed with cylindrical submicrofibrils. The second model (Fig. 2a) is also constructed with three submicrofibrils but with a single 23 Å diagonal, projecting from a rounded cross section and left-hand helically twisted, with a 36Å repeat, similar to the original model (45°±10° crossover angle). The submicrofibrils cross the microfibril axis at roughly a 45°±10° angle, the same crossover angle observed in microflbril TEM images. These models were constructed so that the maximum diameter of the submicrofibrils was 23Å and the overall microfibril diameters were similar to Pt-C coated image diameters of ∼50Å and not the actual diameter of 36.5Å. The methods for computing optical diffraction patterns have been published before.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


Sign in / Sign up

Export Citation Format

Share Document