Self-awareness and the left inferior frontal gyrus: Inner speech use during self-related processing

2007 ◽  
Vol 74 (6) ◽  
pp. 387-396 ◽  
Author(s):  
Alain Morin ◽  
Jayson Michaud
Author(s):  
Alain Morin

The current chapter revisits an earlier account (2005) of how inner speech leads to self-reflection. Definitions, functions, neuroanatomy, and measurement of self-reflection and inner speech are first presented, followed by the detailed proposal suggesting that these two processes are connected in at least three possible ways. Empirical evidence supporting this proposal is discussed, as well as theoretical considerations pertaining to underlying mechanisms explaining how self-reflection and inner speech may interrelate. To illustrate, several self-referential tasks used in typical fMRI studies show a reliable activation of the left inferior frontal gyrus—the main brain area known to sustain inner speech; inner speech can reproduce (i.e. internalize) already existing social mechanisms leading to self-reflection. Some possible philosophical and clinical implications of the role played by inner speech in self-reflection are outlined in conclusion.


2017 ◽  
Vol 29 (9) ◽  
pp. 1605-1620 ◽  
Author(s):  
Yun-Hsuan Yang ◽  
William D. Marslen-Wilson ◽  
Mirjana Bozic

Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.


Author(s):  
Yosef Grodzinsky

AbstractThe prospects of a cognitive neuroscience of syntax are considered with respect to functional neuroanatomy of two seemingly independent systems: Working Memory and syntactic representation and processing. It is proposed that these two systems are more closely related than previously supposed. In particular, it is claimed that a sentence with anaphoric dependencies involves several Working Memories, each entrusted with a different linguistic function. Components of Working Memory reside in the Left Inferior Frontal Gyrus, which is associated with Broca’s region. When lesioned, this area manifests comprehension disruptions in the ability to analyze intra-sentential dependencies, suggesting that Working Memory spans over syntactic computations. The unification of considerations regarding Working Memory with a purely syntactic approach to Broca’s regions leads to the conclusion that mechanisms that compute transformations—and no other syntactic relations—reside in this area.


2021 ◽  
pp. 1-14
Author(s):  
Kenny Skagerlund ◽  
Mikael Skagenholt ◽  
Paul J. Hamilton ◽  
Paul Slovic ◽  
Daniel Västfjäll

Abstract This study investigated the neural correlates of the so-called “affect heuristic,” which refers to the phenomenon whereby individuals tend to rely on affective states rather than rational deliberation of utility and probabilities during judgments of risk and utility of a given event or scenario. The study sought to explore whether there are shared regional activations during both judgments of relative risk and relative benefit of various scenarios, thus being a potential candidate of the affect heuristic. Using functional magnetic resonance imaging, we developed a novel risk perception task, based on a preexisting behavioral task assessing the affect heuristic. A whole-brain voxel-wise analysis of a sample of participants (n = 42) during the risk and benefit conditions revealed overlapping clusters in the left insula, left inferior frontal gyrus, and left medial frontal gyrus across conditions. Extraction of parameter estimates of these clusters revealed that activity of these regions during both tasks was inversely correlated with a behavioral measure assessing the inclination to use the affect heuristic. More activity in these areas during risk judgments reflect individuals' ability to disregard momentary affective impulses. The insula may be involved in integrating viscero-somatosensory information and forming a representation of the current emotional state of the body, whereas activity in the left inferior frontal gyrus and medial frontal gyrus indicates that executive processes may be involved in inhibiting the impulse of making judgments in favor of deliberate risk evaluations.


2012 ◽  
Vol 25 (0) ◽  
pp. 168
Author(s):  
Ruth Adam ◽  
Uta Noppeney

Capacity limitations of attentional resources allow only a fraction of sensory inputs to enter our awareness. Most prominently, in the attentional blink, the observer fails to detect the second of two rapidly successive targets that are presented in a sequence of distractor items. This study investigated whether phonological (in)congruency between visual target letters and spoken letters is modulated by subjects’ awareness. In a visual attentional blink paradigm, subjects were presented with two visual targets (buildings and capital Latin letters, respectively) in a sequence of rapidly presented distractor items. A beep was presented always with T1. We manipulated the presence/absence and phonological congruency of the spoken letter that was presented concurrently with T2. Subjects reported the identity of T1 and T2 and reported the visibility of T2. Behaviorally, subjects correctly identified T2 when it was reported to be either visible or unsure, while performances were below chance level when T2 was reported to be invisible. At the neural level, the anterior cingulate was activated for invisible > unsure > visible T2. In contrast, visible relative to invisible trials increased activation in bilateral cerebellum, pre/post-central gyri extending into parietal sulci and bilateral inferior occipital gyri. Incongruency effects were observed in the left inferior frontal gyrus, caudate nucleus and insula only for visible stimuli. In conclusion, phonological incongruency is processed differently when subjects are aware of the visual stimulus. This indicates that multisensory integration is not automatic but depends on subjects’ cognitive state.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kristof Strijkers ◽  
Valerie Chanoine ◽  
Dashiel Munding ◽  
Anne-Sophie Dubarry ◽  
Agnès Trébuchon ◽  
...  

2007 ◽  
Vol 19 (5) ◽  
pp. 761-775 ◽  
Author(s):  
Hannah R. Snyder ◽  
Keith Feigenson ◽  
Sharon L. Thompson-Schill

Debates about the function of the prefrontal cortex are as old as the field of neuropsychology—often dated to Paul Broca's seminal work. Theories of the functional organization of the prefrontal cortex can be roughly divided into those that describe organization by process and those that describe organization by material. Recent studies of the function of the posterior, left inferior frontal gyrus (pLIFG) have yielded two quite different interpretations: One hypothesis holds that the pLIFG plays a domain-specific role in phonological processing, whereas another hypothesis describes a more general function of the pLIFG in cognitive control. In the current study, we distinguish effects of increasing cognitive control demands from effects of phonological processing. The results support the hypothesized role for the pLIFG in cognitive control, and more task-specific roles for posterior areas in phonology and semantics. Thus, these results suggest an alternative explanation of previously reported phonology-specific effects in the pLIFG.


2019 ◽  
Vol 10 (2) ◽  
pp. 162-169
Author(s):  
Karen Chenausky ◽  
Sébastien Paquette ◽  
Andrea Norton ◽  
Gottfried Schlaug

ObjectiveTo determine the contributions of apraxia of speech (AOS) and anomia to conversational dysfluency.MethodsIn this observational study of 52 patients with chronic aphasia, 47 with concomitant AOS, fluency was quantified using correct information units per minute (CIUs/min) from propositional speech tasks. Videos of patients performing conversational, how-to and picture-description tasks, word and sentence repetition, and diadochokinetic tasks were used to diagnose AOS using the Apraxia of Speech Rating Scale (ASRS). Anomia was quantified by patients' scores on the 30 even-numbered items from the Boston Naming Test (BNT).ResultsTogether, ASRS and BNT scores accounted for 51.4% of the total variance in CIUs/min; the ASRS score accounted for the majority of that variance. The BNT score was associated with lesions in the left superior temporal gyrus, left inferior frontal gyrus, and large parts of the insula. The global ASRS score was associated with lesions in the left dorsal arcuate fasciculus (AF), pre- and post-central gyri, and both banks of the central sulcus of the insula. The ASRS score for the primary distinguishing features of AOS (no overlap with features of aphasia) was associated with less AF and more insular involvement. Only ∼27% of this apraxia-specific lesion overlapped with lesions associated with the BNT score. Lesions associated with AOS had minimal overlap with the frontal aslant tract (FAT) (<1%) or the extreme capsule fiber tract (1.4%). Finally, ASRS scores correlated significantly with damage to the insula but not to the AF, extreme capsule, or FAT.ConclusionsResults are consistent with previous findings identifying lesions of the insula and AF in patients with AOS, damage to both of which may create dysfluency in patients with aphasia.


Sign in / Sign up

Export Citation Format

Share Document