Processing of audiovisual phonological incongruency depends on awareness

2012 ◽  
Vol 25 (0) ◽  
pp. 168
Author(s):  
Ruth Adam ◽  
Uta Noppeney

Capacity limitations of attentional resources allow only a fraction of sensory inputs to enter our awareness. Most prominently, in the attentional blink, the observer fails to detect the second of two rapidly successive targets that are presented in a sequence of distractor items. This study investigated whether phonological (in)congruency between visual target letters and spoken letters is modulated by subjects’ awareness. In a visual attentional blink paradigm, subjects were presented with two visual targets (buildings and capital Latin letters, respectively) in a sequence of rapidly presented distractor items. A beep was presented always with T1. We manipulated the presence/absence and phonological congruency of the spoken letter that was presented concurrently with T2. Subjects reported the identity of T1 and T2 and reported the visibility of T2. Behaviorally, subjects correctly identified T2 when it was reported to be either visible or unsure, while performances were below chance level when T2 was reported to be invisible. At the neural level, the anterior cingulate was activated for invisible > unsure > visible T2. In contrast, visible relative to invisible trials increased activation in bilateral cerebellum, pre/post-central gyri extending into parietal sulci and bilateral inferior occipital gyri. Incongruency effects were observed in the left inferior frontal gyrus, caudate nucleus and insula only for visible stimuli. In conclusion, phonological incongruency is processed differently when subjects are aware of the visual stimulus. This indicates that multisensory integration is not automatic but depends on subjects’ cognitive state.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
An Xie ◽  
Qiuxia Wu ◽  
Winson Fu Zun Yang ◽  
Chang Qi ◽  
Yanhui Liao ◽  
...  

AbstractMethamphetamine (MA) could induce functional and structural brain alterations in dependent subjects. However, few studies have investigated resting-state activity in methamphetamine-dependent subjects (MADs). We aimed to investigate alterations of brain activity during resting-state in MADs using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). We analyzed fALFF and ReHo between MADs (n = 70) and healthy controls (HCs) (n = 84) and performed regression analysis using MA use variables. Compared to HCs, abstinent MADs showed increased fALFF and ReHo values in the bilateral striatum, decreased fALFF in the left inferior frontal gyrus, and decreased ReHo in the bilateral anterior cingulate cortex, sensorimotor cortex, and left precuneus. We also observed the fALFF values of bilateral striatum were positively correlated with the age of first MA use, and negatively correlated with the duration of MA use. The fALFF value of right striatum was also positively correlated with the duration of abstinence. The alterations of spontaneous cerebral activity in abstinent MADs may help us probe into the neurological pathophysiology underlying MA-related dysfunction and recovery. Since MADs with higher fALFF in the right striatum had shorter MA use and longer abstinence, the increased fALFF in the right striatum might implicate early recovery during abstinence.


2010 ◽  
Vol 41 (7) ◽  
pp. 1397-1405 ◽  
Author(s):  
G. A. van Wingen ◽  
P. van Eijndhoven ◽  
I. Tendolkar ◽  
J. Buitelaar ◽  
R. J. Verkes ◽  
...  

BackgroundDepressed individuals demonstrate a poorer ability to recognize the emotions of others, which could contribute to difficulties in interpersonal behaviour. This emotion recognition deficit appears related to the depressive state and is particularly pronounced when emotions are labelled semantically. Here, we investigated its neural basis by comparing emotion recognition processing between depressed, recovered and healthy individuals.MethodMedication-naive patients with a first major depressive episode, medication-free patients who had recovered from a first episode, and a group of matched healthy individuals participated. They were requested to identify the emotion of angry and fearful face stimuli, either by matching them to other emotional faces on a perceptual basis or by matching them to a semantic label, while their brain activity was measured with functional magnetic resonance imaging.ResultsThe depressed individuals performed worse than recovered and healthy individuals on the emotion-labelling but not the emotion-matching task. The labelling deficit was related to increased recruitment of the right amygdala, left inferior frontal gyrus and anterior cingulate cortex.ConclusionsDeficits in semantic labelling of negative emotions are related to increased activation in specific brain regions and these abnormalities are mood state-dependent. These results indicate that accessing semantic knowledge about negative information triggers increased amygdala and left inferior frontal gyrus processing, which subsequently impairs task-relevant behaviour. We propose that this may reflect the activation of negative schemas.


2019 ◽  
Vol 46 (3) ◽  
pp. 633-642 ◽  
Author(s):  
Helene Hjelmervik ◽  
Alexander R Craven ◽  
Igne Sinceviciute ◽  
Erik Johnsen ◽  
Kristiina Kompus ◽  
...  

Abstract Glutamate (Glu), gamma amino-butyric acid (GABA), and excitatory/inhibitory (E/I) imbalance have inconsistently been implicated in the etiology of schizophrenia. Elevated Glu levels in language regions have been suggested to mediate auditory verbal hallucinations (AVH), the same regions previously associated with neuronal hyperactivity during AVHs. It is, however, not known whether alterations in Glu levels are accompanied by corresponding GABA alterations, nor is it known if Glu levels are affected in brain regions with known neuronal hypo-activity. Using magnetic resonance spectroscopy (MRS), we measured Glx (Glu+glutamine) and GABA+ levels in the anterior cingulate cortex (ACC), left and right superior temporal gyrus (STG), and left inferior frontal gyrus (IFG), in a sample of 77 schizophrenia patients and 77 healthy controls. Two MRS-protocols were used. Results showed a marginally significant positive correlation in the left STG between Glx and AVHs, whereas a significant negative correlation was found in the ACC. In addition, high-hallucinating patients as a group showed decreased ACC and increased left STG Glx levels compared to low-hallucinating patients, with the healthy controls in between the 2 hallucinating groups. No significant differences were found for GABA+ levels. It is discussed that reduced ACC Glx levels reflect an inability of AVH patients to cognitively inhibit their “voices” through neuronal hypo-activity, which in turn originates from increased left STG Glu levels and neuronal hyperactivity. A revised E/I-imbalance model is proposed where Glu-Glu imbalance between brain regions is emphasized rather than Glu-GABA imbalance within regions, for the understanding of the underlying neurochemistry of AVHs.


2020 ◽  
Vol 48 (7) ◽  
pp. 1-19
Author(s):  
Ryan T. Daley ◽  
Holly J. Bowen ◽  
Eric C. Fields ◽  
Angela Gutchess ◽  
Elizabeth A. Kensinger

Self-relevance effects are often confounded by the presence of emotional content, rendering it difficult to determine how brain networks functionally connected to the ventromedial prefrontal cortex (vmPFC) are affected by the independent contributions of self-relevance and emotion. This difficulty is complicated by age-related changes in functional connectivity between the vmPFC and other default mode network regions, and regions typically associated with externally oriented networks. We asked groups of younger and older adults to imagine placing emotional and neutral objects in their home or a stranger's home. An age-invariant vmPFC cluster showed increased activation for self-relevant and emotional content processing. Functional connectivity analyses revealed age × self-relevance interactions in vmPFC connectivity with the anterior cingulate cortex. There were also age × emotion interactions in vmPFC functional connectivity with the anterior insula, orbitofrontal gyrus, inferior frontal gyrus, and supramarginal gyrus. Interactions occurred in regions with the greatest differences between the age groups, as revealed by conjunction analyses. Implications of the findings are discussed.


2008 ◽  
Vol 20 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Tomoyo Morita ◽  
Shoji Itakura ◽  
Daisuke N. Saito ◽  
Satoshi Nakashita ◽  
Tokiko Harada ◽  
...  

Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.


2017 ◽  
Vol 29 (9) ◽  
pp. 1605-1620 ◽  
Author(s):  
Yun-Hsuan Yang ◽  
William D. Marslen-Wilson ◽  
Mirjana Bozic

Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.


Author(s):  
Yosef Grodzinsky

AbstractThe prospects of a cognitive neuroscience of syntax are considered with respect to functional neuroanatomy of two seemingly independent systems: Working Memory and syntactic representation and processing. It is proposed that these two systems are more closely related than previously supposed. In particular, it is claimed that a sentence with anaphoric dependencies involves several Working Memories, each entrusted with a different linguistic function. Components of Working Memory reside in the Left Inferior Frontal Gyrus, which is associated with Broca’s region. When lesioned, this area manifests comprehension disruptions in the ability to analyze intra-sentential dependencies, suggesting that Working Memory spans over syntactic computations. The unification of considerations regarding Working Memory with a purely syntactic approach to Broca’s regions leads to the conclusion that mechanisms that compute transformations—and no other syntactic relations—reside in this area.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yang Du ◽  
Hailong Li ◽  
Hongqi Xiao ◽  
Mei Wang ◽  
Wei Zhang ◽  
...  

Trait anxiety is considered a vulnerability factor for the development of generalized anxiety disorder (GAD). The amygdala is related to both trait anxiety and GAD. Thus, we investigated amygdala-based functional connectivity (FC) in drug-naive non-comorbid GAD patients and explored its associations with personality, symptoms, and illness severity. FC analyses using the bilateral amygdala as seeds were performed with resting-state functional MRI data from 38 GAD patients and 20 matched healthy controls (HCs). Clinical characteristics were correlated with FC Z-scores from regions showing significant group differences. Furthermore, moderation analyses were used to explore the conditional effect of illness severity measured by the Clinical Global Impression–Severity (CGI-S) scale on the relationship between FC and trait anxiety. Relative to HCs, GAD patients showed hypoconnectivity between the amygdala and the rostral anterior cingulate cortex (rACC), inferior frontal gyrus (IFG), parahippocampal gyrus, and cerebellum and hyperconnectivity between the amygdala and the superior temporal gyrus (STG), insula, and postcentral gyrus. In GAD patients, amygdala–rACC connectivity was negatively associated with symptom severity and trait anxiety, and amygdala–IFG connectivity was positively associated with symptom severity. Moreover, CGI-S scores moderated the negative correlation between trait anxiety and amygdala–rACC FC. We demonstrate that there is extensive amygdala-based network dysfunction in patients with GAD. More importantly, amygdala–rACC connectivity plays a key role in the neural pathology of trait anxiety. Finally, the more severe the illness, the stronger the negative association between trait anxiety and amygdala–rACC FC. Our results emphasize the importance of personalized intervention in GAD.


2021 ◽  
Author(s):  
Ting-Peng Liang ◽  
Yuwen Li ◽  
Nai-Shing Yen ◽  
Ofir Turel ◽  
Sen-Mou Hsu

Abstract Background: Escalation of commitment is a common bias in human decision making. The present study examined (1) differences in neural recruitment for escalation and de-escalation decisions of prior investments, and (2) how the activations of these brain networks are modulated by two factors that are often argued to modulate the behavior: (i) self-responsibility, and (ii) framing of the success probabilities. Results: Imaging data were obtained from functional magnetic resonance imaging (fMRI) applied to 29 participants. A whole-brain analysis was conducted to compare brain activations between conditions. ROI analysis, then, was used to examine if these significant activations were modulated by two contextual factors. Finally, mediation analysis was applied to explore how the contextual factors affect escalation decisions through brain activations. The findings showed that (1) escalation decisions are faster than de-escalation decisions, (2) the corresponding network of brain regions recruited for escalation (anterior cingulate cortex, insula and precuneus) decisions differs from this recruited for de-escalation decisions (inferior and superior frontal gyri), (3) the switch from escalation to de-escalation is primarily frontal gyri dependent, and (4) activation in the anterior cingulate cortex, insula and precuneus were further increased in escalation decisions, when the outcome probabilities of the follow-up investment were positively framed; and activation in the inferior and superior frontal gyri in de-escalation decisions were increased when the outcome probabilities were negatively framed. Conclusions: Escalation and de-escalation decisions recruit different brain regions. Framing of possible outcomes as negative leads to escalation decisions through recruitment of the inferior frontal gyrus. Responsibility for decisions affects escalation decisions through recruitment of the superior (inferior) gyrus, when the decision is framed positively (negatively).


Sign in / Sign up

Export Citation Format

Share Document