Automatic staging model of heart failure based on deep learning

2019 ◽  
Vol 52 ◽  
pp. 77-83 ◽  
Author(s):  
Dengao Li ◽  
Xuemei Li ◽  
Jumin Zhao ◽  
Xiaohong Bai
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Rao ◽  
Y Li ◽  
R Ramakrishnan ◽  
A Hassaine ◽  
D Canoy ◽  
...  

Abstract Background/Introduction Predicting incident heart failure has been challenging. Deep learning models when applied to rich electronic health records (EHR) offer some theoretical advantages. However, empirical evidence for their superior performance is limited and they remain commonly uninterpretable, hampering their wider use in medical practice. Purpose We developed a deep learning framework for more accurate and yet interpretable prediction of incident heart failure. Methods We used longitudinally linked EHR from practices across England, involving 100,071 patients, 13% of whom had been diagnosed with incident heart failure during follow-up. We investigated the predictive performance of a novel transformer deep learning model, “Transformer for Heart Failure” (BEHRT-HF), and validated it using both an external held-out dataset and an internal five-fold cross-validation mechanism using area under receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC). Predictor groups included all outpatient and inpatient diagnoses within their temporal context, medications, age, and calendar year for each encounter. By treating diagnoses as anchors, we alternatively removed different modalities (ablation study) to understand the importance of individual modalities to the performance of incident heart failure prediction. Using perturbation-based techniques, we investigated the importance of associations between selected predictors and heart failure to improve model interpretability. Results BEHRT-HF achieved high accuracy with AUROC 0.932 and AUPRC 0.695 for external validation, and AUROC 0.933 (95% CI: 0.928, 0.938) and AUPRC 0.700 (95% CI: 0.682, 0.718) for internal validation. Compared to the state-of-the-art recurrent deep learning model, RETAIN-EX, BEHRT-HF outperformed it by 0.079 and 0.030 in terms of AUPRC and AUROC. Ablation study showed that medications were strong predictors, and calendar year was more important than age. Utilising perturbation, we identified and ranked the intensity of associations between diagnoses and heart failure. For instance, the method showed that established risk factors including myocardial infarction, atrial fibrillation and flutter, and hypertension all strongly associated with the heart failure prediction. Additionally, when population was stratified into different age groups, incident occurrence of a given disease had generally a higher contribution to heart failure prediction in younger ages than when diagnosed later in life. Conclusions Our state-of-the-art deep learning framework outperforms the predictive performance of existing models whilst enabling a data-driven way of exploring the relative contribution of a range of risk factors in the context of other temporal information. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): National Institute for Health Research, Oxford Martin School, Oxford Biomedical Research Centre


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Lewis ◽  
J Figueroa

Abstract   Recent health reforms have created incentives for cardiologists and accountable care organizations to participate in value-based care models for heart failure (HF). Accurate risk stratification of HF patients is critical to efficiently deploy interventions aimed at reducing preventable utilization. The goal of this paper was to compare deep learning approaches with traditional logistic regression (LR) to predict preventable utilization among HF patients. We conducted a prognostic study using data on 93,260 HF patients continuously enrolled for 2-years in a large U.S. commercial insurer to develop and validate prediction models for three outcomes of interest: preventable hospitalizations, preventable emergency department (ED) visits, and preventable costs. Patients were split into training, validation, and testing samples. Outcomes were modeled using traditional and enhanced LR and compared to gradient boosting model and deep learning models using sequential and non-sequential inputs. Evaluation metrics included precision (positive predictive value) at k, cost capture, and Area Under the Receiver operating characteristic (AUROC). Deep learning models consistently outperformed LR for all three outcomes with respect to the chosen evaluation metrics. Precision at 1% for preventable hospitalizations was 43% for deep learning compared to 30% for enhanced LR. Precision at 1% for preventable ED visits was 39% for deep learning compared to 33% for enhanced LR. For preventable cost, cost capture at 1% was 30% for sequential deep learning, compared to 18% for enhanced LR. The highest AUROCs for deep learning were 0.778, 0.681 and 0.727, respectively. These results offer a promising approach to identify patients for targeted interventions. FUNDunding Acknowledgement Type of funding sources: Private company. Main funding source(s): internally funded by Diagnostic Robotics Inc.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 20313-20324 ◽  
Author(s):  
Martin Gjoreski ◽  
Anton Gradisek ◽  
Borut Budna ◽  
Matjaz Gams ◽  
Gregor Poglajen

2020 ◽  
Author(s):  
Rui Li ◽  
Changchang Yin ◽  
Samuel Yang ◽  
Buyue Qian ◽  
Ping Zhang

BACKGROUND Deep learning models have attracted significant interest from health care researchers during the last few decades. There have been many studies that apply deep learning to medical applications and achieve promising results. However, there are three limitations to the existing models: (1) most clinicians are unable to interpret the results from the existing models, (2) existing models cannot incorporate complicated medical domain knowledge (eg, a disease causes another disease), and (3) most existing models lack visual exploration and interaction. Both the electronic health record (EHR) data set and the deep model results are complex and abstract, which impedes clinicians from exploring and communicating with the model directly. OBJECTIVE The objective of this study is to develop an interpretable and accurate risk prediction model as well as an interactive clinical prediction system to support EHR data exploration, knowledge graph demonstration, and model interpretation. METHODS A domain-knowledge–guided recurrent neural network (DG-RNN) model is proposed to predict clinical risks. The model takes medical event sequences as input and incorporates medical domain knowledge by attending to a subgraph of the whole medical knowledge graph. A global pooling operation and a fully connected layer are used to output the clinical outcomes. The middle results and the parameters of the fully connected layer are helpful in identifying which medical events cause clinical risks. DG-Viz is also designed to support EHR data exploration, knowledge graph demonstration, and model interpretation. RESULTS We conducted both risk prediction experiments and a case study on a real-world data set. A total of 554 patients with heart failure and 1662 control patients without heart failure were selected from the data set. The experimental results show that the proposed DG-RNN outperforms the state-of-the-art approaches by approximately 1.5%. The case study demonstrates how our medical physician collaborator can effectively explore the data and interpret the prediction results using DG-Viz. CONCLUSIONS In this study, we present DG-Viz, an interactive clinical prediction system, which brings together the power of deep learning (ie, a DG-RNN–based model) and visual analytics to predict clinical risks and visually interpret the EHR prediction results. Experimental results and a case study on heart failure risk prediction tasks demonstrate the effectiveness and usefulness of the DG-Viz system. This study will pave the way for interactive, interpretable, and accurate clinical risk predictions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245177
Author(s):  
Xing Han Lu ◽  
Aihua Liu ◽  
Shih-Chieh Fuh ◽  
Yi Lian ◽  
Liming Guo ◽  
...  

Motivation Recurrent neural networks (RNN) are powerful frameworks to model medical time series records. Recent studies showed improved accuracy of predicting future medical events (e.g., readmission, mortality) by leveraging large amount of high-dimensional data. However, very few studies have explored the ability of RNN in predicting long-term trajectories of recurrent events, which is more informative than predicting one single event in directing medical intervention. Methods In this study, we focus on heart failure (HF) which is the leading cause of death among cardiovascular diseases. We present a novel RNN framework named Deep Heart-failure Trajectory Model (DHTM) for modelling the long-term trajectories of recurrent HF. DHTM auto-regressively predicts the future HF onsets of each patient and uses the predicted HF as input to predict the HF event at the next time point. Furthermore, we propose an augmented DHTM named DHTM+C (where “C” stands for co-morbidities), which jointly predicts both the HF and a set of acute co-morbidities diagnoses. To efficiently train the DHTM+C model, we devised a novel RNN architecture to model disease progression implicated in the co-morbidities. Results Our deep learning models confers higher prediction accuracy for both the next-step HF prediction and the HF trajectory prediction compared to the baseline non-neural network models and the baseline RNN model. Compared to DHTM, DHTM+C is able to output higher probability of HF for high-risk patients, even in cases where it is only given less than 2 years of data to predict over 5 years of trajectory. We illustrated multiple non-trivial real patient examples of complex HF trajectories, indicating a promising path for creating highly accurate and scalable longitudinal deep learning models for modeling the chronic disease.


2019 ◽  
Vol 49 (7) ◽  
pp. 629 ◽  
Author(s):  
Joon-myoung Kwon ◽  
Kyung-Hee Kim ◽  
Ki-Hyun Jeon ◽  
Hyue Mee Kim ◽  
Min Jeong Kim ◽  
...  

2020 ◽  
Vol 2 ◽  
Author(s):  
Aixia Guo ◽  
Randi E. Foraker ◽  
Robert M. MacGregor ◽  
Faraz M. Masood ◽  
Brian P. Cupps ◽  
...  

Objective: Although many clinical metrics are associated with proximity to decompensation in heart failure (HF), none are individually accurate enough to risk-stratify HF patients on a patient-by-patient basis. The dire consequences of this inaccuracy in risk stratification have profoundly lowered the clinical threshold for application of high-risk surgical intervention, such as ventricular assist device placement. Machine learning can detect non-intuitive classifier patterns that allow for innovative combination of patient feature predictive capability. A machine learning-based clinical tool to identify proximity to catastrophic HF deterioration on a patient-specific basis would enable more efficient direction of high-risk surgical intervention to those patients who have the most to gain from it, while sparing others. Synthetic electronic health record (EHR) data are statistically indistinguishable from the original protected health information, and can be analyzed as if they were original data but without any privacy concerns. We demonstrate that synthetic EHR data can be easily accessed and analyzed and are amenable to machine learning analyses.Methods: We developed synthetic data from EHR data of 26,575 HF patients admitted to a single institution during the decade ending on 12/31/2018. Twenty-seven clinically-relevant features were synthesized and utilized in supervised deep learning and machine learning algorithms (i.e., deep neural networks [DNN], random forest [RF], and logistic regression [LR]) to explore their ability to predict 1-year mortality by five-fold cross validation methods. We conducted analyses leveraging features from prior to/at and after/at the time of HF diagnosis.Results: The area under the receiver operating curve (AUC) was used to evaluate the performance of the three models: the mean AUC was 0.80 for DNN, 0.72 for RF, and 0.74 for LR. Age, creatinine, body mass index, and blood pressure levels were especially important features in predicting death within 1-year among HF patients.Conclusions: Machine learning models have considerable potential to improve accuracy in mortality prediction, such that high-risk surgical intervention can be applied only in those patients who stand to benefit from it. Access to EHR-based synthetic data derivatives eliminates risk of exposure of EHR data, speeds time-to-insight, and facilitates data sharing. As more clinical, imaging, and contractile features with proven predictive capability are added to these models, the development of a clinical tool to assist in timing of intervention in surgical candidates may be possible.


Sign in / Sign up

Export Citation Format

Share Document