Differentially expressed micro-RNAs in clear cell renal cell carcinoma

2010 ◽  
Vol 203 (1) ◽  
pp. 71
Author(s):  
Klaas Kok ◽  
Gerben Duns ◽  
Anke van den Berg ◽  
Geert Harms ◽  
Inge van Duivenbode ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8096 ◽  
Author(s):  
Haiping Zhang ◽  
Jian Zou ◽  
Ying Yin ◽  
Bo Zhang ◽  
Yaling Hu ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of cancer within the urinary system. Great efforts have been made to elucidate the pathogeny. However, the molecular mechanism of ccRCC is still not well understood. The aim of this study is to identify key genes in the carcinogenesis and progression of ccRCC. The mRNA microarray dataset GSE53757 was downloaded from the Gene Expression Omnibus database. The GSE53757 dataset contains tumor and matched paracancerous specimens from 72 ccRCC patients with clinical stage I to IV. The linear model of microarray data (limma) package in R language was used to identify differentially expressed genes (DEGs). The protein–protein interaction (PPI) network of the DEGs was constructed using the search tool for the retrieval of interacting genes (STRING). Subsequently, we visualized molecular interaction networks by Cytoscape software and analyzed modules with MCODE. A total of 1,284, 1,416, 1,610 and 1,185 up-regulated genes, and 932, 1,236, 1,006 and 929 down-regulated genes were identified from clinical stage I to IV ccRCC patients, respectively. The overlapping DEGs among the four clinical stages contain 870 up-regulated and 645 down-regulated genes. The enrichment analysis of DEGs in the top module was carried out with DAVID. The results showed the DEGs of the top module were mainly enriched in microtubule-based movement, mitotic cytokinesis and mitotic chromosome condensation. Eleven up-regulated genes and one down-regulated gene were identified as hub genes. Survival analysis showed the high expression of CENPE, KIF20A, KIF4A, MELK, NCAPG, NDC80, NUF2, TOP2A, TPX2 and UBE2C, and low expression of ACADM gene could be involved in the carcinogenesis, invasion or recurrence of ccRCC. Literature retrieval results showed the hub gene NDC80, CENPE and ACADM might be novel targets for the diagnosis, clinical treatment and prognosis of ccRCC. In conclusion, the findings of present study may help us understand the molecular mechanisms underlying the carcinogenesis and progression of ccRCC, and provide potential diagnostic, therapeutic and prognostic biomarkers.


2012 ◽  
Vol 8 (4) ◽  
pp. 1040 ◽  
Author(s):  
Francesca Raimondo ◽  
Claudia Salemi ◽  
Clizia Chinello ◽  
Daniela Fumagalli ◽  
Lavinia Morosi ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Guoliang Sun ◽  
Yue Ge ◽  
Yangjun Zhang ◽  
Libin Yan ◽  
Xiaoliang Wu ◽  
...  

Dysregulation of transcription factors contributes to the carcinogenesis and progression of cancers. However, their roles in clear cell renal cell carcinoma remain largely unknown. This study aimed to evaluate the clinical significance of TFs and investigate their potential molecular mechanisms in ccRCC. Data were accessed from the cancer genome atlas kidney clear cell carcinoma cohort. Bioinformatics algorithm was used in copy number alterations mutations, and differentially expressed TFs’ analysis. Univariate and multivariate Cox regression analyses were performed to identify clinically significant TFs and construct a six-TF prognostic panel. TFs’ expression was validated in human tissues. Gene set enrichment analysis (GSEA) was utilized to find enriched cancer hallmark pathways. Functional experiments were conducted to verify the cancer-promoting effect of BARX homeobox 1 (BARX1) and distal-less homeobox 4 (DLX4) in ccRCC, and Western blot was performed to explore their downstream pathways. As for results, many CNAs and mutations were identified in transcription factor genes. TFs were differentially expressed in ccRCC. An applicable predictive panel of six-TF genes was constructed to predict the overall survival for ccRCC patients, and its diagnostic efficiency was evaluated by the area under the curve (AUC). BARX1 and DLX4 were associated with poor prognosis, and they could promote the proliferation and migration of ccRCC. In conclusion, the six-TF panel can be used as a prognostic biomarker for ccRCC patients. BARX1 and DLX4 play oncogenic roles in ccRCC via promoting proliferation and epithelial–mesenchymal transition. They have the potential to be novel therapeutic targets for ccRCC.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78452 ◽  
Author(s):  
Alessio Valletti ◽  
Margherita Gigante ◽  
Orazio Palumbo ◽  
Massimo Carella ◽  
Chiara Divella ◽  
...  

Genomics Data ◽  
2015 ◽  
Vol 5 ◽  
pp. 173-175 ◽  
Author(s):  
Mario Deng ◽  
Jasmine J. Blondeau ◽  
Doris Schmidt ◽  
Sven Perner ◽  
Stefan C. Müller ◽  
...  

2020 ◽  
Author(s):  
Zheng Wang ◽  
Yanlong Zhang ◽  
Shuaishuai Fan ◽  
Yuan Ji ◽  
Jianchao Ren ◽  
...  

Abstract Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. This study aimed to establish a nomogram to predict ccRCC prognosis.Methods: By integrating DNA methylation (DNAm) data and gene expression profiles of ccRCC obtained from The Cancer Genome Atlas (TCGA), DNAm-driven genes were identified by differential and correlation analyses. Next, risk genes were selected by multiple algorithms (univariate Cox and Kaplan-Meier survival analyses) and various databases (TCGA, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and The Human Protein Atlas (HPA)). A risk score model was established by multivariate Cox analyses. ConsensusPathDB and Gene Set Enrichment Analysis (GSEA) were used to identify the biological functions of the selected genes. After comprehensively evaluating the clinical data, we established and assessed a dynamic nomogram available on a webserver.Results: In total, 220 differentially expressed DNAm-driven genes were identified, and five-gene signature (EPB41L4B, HHLA2, IFI16, CMTM3, and XAF1) was related to overall survival (OS). Next, we integrated the DNAm-driven genes into the prognostic risk score model and found that age, histologic grade, pathological stage, and risk level were correlated with OS in ccRCC patients. Based on these variables, a dynamic nomogram was established to predict the ccRCC prognosis. Finally, Functional enrichment analysis showed that the functions of these genes were relevant to immune reactions.Conclusions: We identified a 5 DNAm-driven gene signature whose altered status was highly correlated with ccRCC patient OS. We constructed a dynamic nomogram to provide individualized survival predictions for ccRCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luyang Xiong ◽  
Yuchen Feng ◽  
Wei Hu ◽  
Jiahong Tan ◽  
Shusheng Li ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer worldwide, and appropriate cancer biomarkers facilitate early diagnosis, treatment, and prognosis prediction in cancer management. However, an accurate biomarker for ccRCC is lacking. This study identified 356 differentially expressed genes in ccRCC tissues compared with normal kidney tissues by integrative analysis of eight ccRCC datasets. Enrichment analysis of the differentially expressed genes unveiled improved adaptation to hypoxia and metabolic reprogramming of the tumor cells. Aldehyde oxidase 1 (AOX1) gene was identified as a biomarker for ccRCC among all the differentially expressed genes. ccRCC tissues expressed significantly lower AOX1 than normal kidney tissues, which was further validated by immunohistochemistry at the protein level and The Cancer Genome Atlas (TCGA) data mining at the mRNA level. Higher AOX1 expression predicted better overall survival in ccRCC patients. Furthermore, AOX1 DNA copy number deletion and hypermethylation were negatively correlated with AOX1 expression, which might be the potential mechanism for its dysregulation in ccRCC. Finally, we illustrated that the effect of AOX1 as a tumor suppressor gene is not restricted to ccRCC but universally exists in many other cancer types. Hence, AOX1 may act as a potential prognostic biomarker and therapeutic target for ccRCC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bing Zhang ◽  
Wei Chu ◽  
Feifei Wen ◽  
Li Zhang ◽  
Lixia Sun ◽  
...  

Objective: The roles of long non-coding RNAs (lncRNAs) in the diagnosis of clear cell renal cell carcinoma (ccRCC) are still not well-defined. We aimed to identify differentially expressed lncRNAs and mRNAs in plasma of ccRCC patients and health controls systematically.Methods: Expression profile of plasma lncRNAs and mRNAs in ccRCC patients and healthy controls was analyzed based on microarray assay. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based approaches were used to investigate biological function and signaling pathways mediated by the differentially expressed mRNAs. SOCS2-AS1 was selected for validation using Real-Time PCR. The differentially expressed lncRNAs and mRNAs were further compared with E-MTAB-1830 datasets using Venn and the NetworkAnalyst website. The GEPIA and ULCAN websites were utilized for the evaluation of the expression level of differentially expressed mRNA and their association with overall survival (OS).Results: A total of 3,664 differentially expressed lncRNAs were identified in the plasma of ccRCC patients, including 1,511 up-regulated and 2,153 down-regulated lncRNAs (fold change ≥2 and P < 0.05), respectively. There were 2,268 differentially expressed mRNAs, including 932 up-regulated mRNAs and 1,336 down-regulated mRNAs, respectively (fold change ≥2 and P < 0.05). Pathway analysis based on deregulated mRNAs was mainly involved in melanogenesis and Hippo signaling pathway (P < 0.05). In line with the lncRNA microarray findings, the SOCS2-AS1 was down-regulated in ccRCC plasma and tissues, as well as in cell lines. Compared with the E-MTAB-1830 gene expression profiles, we identified 18 lncRNAs and 87 mRNAs differently expressed in both plasma and neoplastic tissues of ccRCC. The expression of 10 mRNAs (EPB41L4B, CCND1, GGT1, CGNL1, CYSLTR1, PLAUR, UGT3A1, PROM2, MUC12, and PCK1) was correlated with the overall survival (OS) rate in ccRCC patients based on the GEPIA and ULCAN websites.Conclusions: We firstly reported differentially expressed lncRNAs in ccRCC patients and healthy controls systemically. Several differentially expressed lncRNAs and mRNAs were identified, which might serve as diagnostic or prognostic markers. The biological function of these lncRNAs and mRNAs should be further validated. Our study may contribute to the future treatment of ccRCC and provide novel insights into cancer biology.


Sign in / Sign up

Export Citation Format

Share Document