EM2D9, A monoclonal antibody against integrin α5β1, has potent antitumor activity on endometrial cancer in vitro and in vivo

2020 ◽  
Vol 483 ◽  
pp. 66-74 ◽  
Author(s):  
Yinyan Xu ◽  
Yi Li ◽  
Jiahui Pan ◽  
Xing Kang ◽  
Xu Zhang ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2342-2342 ◽  
Author(s):  
Timothy S. Lewis ◽  
Renee S. McCormick ◽  
Kim Kissler ◽  
Ivan J. Stone ◽  
Mechthild Jonas ◽  
...  

Abstract SGN-40 is a humanized antibody targeting CD40, a TNF receptor family member expressed on normal B cells, non-Hodgkin’s lymphoma (NHL), multiple myeloma, and a variety of carcinomas. Previous studies have shown that SGN-40 triggers proapoptotic signal transduction, mediates effector function (ADCC), and has in vivo antitumor activity in CD40+ lymphoma xenograft models. We now report in vivo efficacy data for SGN-40 in combination with the anti-CD20 monoclonal antibody, rituximab, and approved chemotherapy regimens for the treatment of NHL. The growth of subcutaneous Ramos tumors in SCID mice was delayed following SGN-40 or rituximab treatment. However, the combination of SGN-40 + rituximab (S-R) significantly improved efficacy over either antibody alone. SGN-40 was then tested with ICE (ifosfamide, carboplatin, etoposide) chemotherapy with or without rituximab (S-R-ICE and S-ICE). These studies demonstrated that both S-R-ICE and S-ICE treated mice had lower tumor burden than R-ICE or SGN-40 treated animals. Additionally, the effect of SGN-40 in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy with or without rituximab (S-R-CHOP and S-CHOP) was examined. S-R-CHOP and S-CHOP therapies showed a significant delay in tumor growth compared with R-CHOP or SGN-40 alone. Furthermore, the efficacy observed in S-R-ICE and S-R-CHOP treatments exceeded the S-R combination, suggesting that SGN-40 chemosensitizes lymphoma cells by a signaling mechanism in addition to augmenting ADCC when combined with rituximab. To better understand the chemosensitization effect of SGN-40 in xenograft models, signal transduction events triggered by SGN-40 were examined in vitro. SGN-40 treatment caused the sustained degradation of the BCL-6 protooncogene in several lymphoma cell lines, following prolonged MAP Kinase pathway activation. BCL-6 is implicated in lymphomagenesis of germinal center derived lymphomas, and is proteasomally degraded after phosphorylation by ERK1/2 MAPK. Immunohistochemical analyses of Ramos tumors harvested from mice following treatment with SGN-40 or S-CHOP revealed elevated numbers of apoptotic cells versus untreated tumors. A distinct downregulation of BCL-6 staining in Ramos tumor cells was also observed in SGN-40 and S-CHOP treated animals, correlating with increased cell death. Finally, in some NHL lines SGN-40 upregulated the p53 family member TAp63alpha, a chemo-sensitizing transcription factor capable of inducing apoptosis when overexpressed. When combined with cytotoxic agents, SGN-40 caused a greater induction of TAp63alpha compared with chemotherapy alone, a potential mechanism underlying the improved antitumor activity seen in combination studies. Collectively, these data suggest that SGN-40 signaling occurs at the tumor site, likely contributing directly to tumor cell killing and chemosensitization. These preclinical studies support our earlier work suggesting that addition of SGN-40 to standard therapeutic regimens may improve the outcome for patients with NHL.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13170-13170
Author(s):  
M. P. Morelli ◽  
T. Cascone ◽  
T. Troiani ◽  
C. Tuccillo ◽  
R. Bianco ◽  
...  

13170 Background: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor A (VEGF-A) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. ZD6474 (ZACTIMA™) is an orally available, small molecule inhibitor of VEGF receptor-2 (VEGFR-2), EGFR and RET tyrosine kinase activity. We investigated the activity of ZD6474 in combination with cetuximab, an anti-EGFR blocking monoclonal antibody, to determine the antitumor activity of EGFR blockade through the combined use of two agents targeting the receptor at different molecular sites in cancer cells and of VEGFR-2 blockade in endothelial cells. Methods: The antitumor activity in vitro and in vivo of ZD6474 and/or cetuximab was tested in human cancer cell lines with a functional EGFR autocrine pathway. Results: In vitro, the combination of ZD6474 and cetuximab produced synergistic growth inhibition in all cancer cell lines tested as assessed by the Chou and Talalay method. In vivo, 4 weeks of treatment with ZD6474 (75 mg/kg p.o., days 1–5 each week) or cetuximab (1 mg i.p., days 2 and 5 each week) produced a tumor growth delay of 21–28 days (P < 0.001) in nude mice bearing established human colon carcinoma (GEO) or lung adenocarcinoma (A549) cancer xenografts compared with untreated controls. Combination treatment with ZD6474 and cetuximab for 4 weeks resulted in a more marked tumor growth delay of 120–140 days compared with controls, and this was significantly greater than with either single agent therapy (P < 0.001). Following combination treatment, 3/10 A549 xenograft-bearing mice and 4/10 GEO xenograft-bearing mice had no histologic evidence of tumor at the end of the experiment. Immunohistochemical analysis of tumor samples obtained from mice treated with the two drugs in combination demonstrated a cooperative inhibition of cancer cell proliferation and an almost complete suppression of tumor angiogenesis. Conclusions: This study provides a rationale for evaluating in a clinical setting the double blockade of EGFR in combination with inhibition of VEGFR-2 signaling as cancer therapy. [Table: see text]


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1349-1349 ◽  
Author(s):  
Tadakazu Akiyama ◽  
Shin-ichiro Takayanagi ◽  
Yoshimi Maekawa ◽  
Kohta Miyawaki ◽  
Fumiaki Jinnouchi ◽  
...  

Abstract Human interleukin-3 receptor alpha (IL-3Ra, CD123), which promotes the proliferation and differentiation of hematopoietic cells, is highly expressed in myeloid malignancies, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We newly generated KHK2823, a non-fucosylated fully human IgG1 monoclonal antibody against human IL-3Ra, by utilizing the POTELLIGENT® technology. Here, we describe the in vitro and in vivo preclinical efficacy and safety of KHK2823, as well as its pharmacodynamic (PD) profile. At first, we explored that KHK2823 bound to various hematological malignant cells and leukemic stem cells. The cells from AML and MDS bone marrows were found to be bound by KHK2823. A significant part of bone marrow cells derived from B-cell acute lymphoblastic leukemia (B-ALL) patients was also bound by KHK2823. KHK2823 bound to soluble human IL-3Ra protein with a sub-nanomolar dissociation constant (KD), and recognized CD34+ CD38+ (leukemic blast) and/or CD34+ CD38- (leukemic stem cell) cells in patients with AML/MDS, as well as AML cell lines, thereby obtaining a high antibody-dependent cellular cytotoxic activity without complement-dependent cytotoxicity. Interestingly, KHK2823 did not interfere with the binding of IL-3 to IL-3R. The lack of a receptor-ligand interaction may conserve the IL-3 signal, which plays an important role in normal hematopoiesis. In a tumor model xenografting the human AML cell line MOLM-13 on nude rats, KHK2823 significantly suppressed the tumor growth at doses of 0.1 and 1 mg/kg (Figure 1). The PD and toxicity profiles of KHK2823 were assessed in cynomolgus monkeys administered at doses ranging from 0.1 to 100 mg/kg by i.v. infusion, once weekly for 4 weeks. KHK2823 was generally well tolerated in monkeys, even at 100 mg/kg. The number of IL-3Ra-positive cells in the peripheral blood of cynomolgus monkeys decreased in all groups receiving KHK2823, which suggest KHK2823 could exert its depletion activity of IL-3Ra-positive cells in human (Figure 2). Currently, the safety and tolerability of KHK2823 is being investigated in patients with AML or MDS in a Phase 1 study (NCT02181699, https://clinicaltrials.gov/ct2/show/NCT02181699). This is the first non-randomized, open-label, dose escalation clinical study to investigate the safety, PK, immunogenicity and PD of repeated doses of KHK2823. In summary, KHK2823 was confirmed to bind to AML, MDS and B-ALL cells as the IL-3Ra in accordance with other publications. KHK2823 was also found to eliminate AML cells in vitro and also suppressed the AML tumor growth in the in vivo model. In addition, the number of IL-3Ra-positive cells in cynomolgus monkeys decreased following i.v. infusion of 0.1mg/kg KHK2823 with a tolerable safety profile, even at a dose of 100 mg/kg. Taken together, KHK2823 may therefore be a promising anti-IL-3Ra therapeutic drug for the treatment of AML. Figure 1. Antitumor activity of KHK2823 in a tumor xenograft nude rat model Figure 1. Antitumor activity of KHK2823 in a tumor xenograft nude rat model Figure 2. PD profile of KHK2823 in cynomolgus monkeys Figure 2. PD profile of KHK2823 in cynomolgus monkeys Disclosures Akiyama: Kyowa Hakko Kirin Co., Ltd.: Employment. Takayanagi:Kyowa Hakko Kirin Co., Ltd.: Employment. Maekawa:Kyowa Hakko Kirin Co., Ltd.: Employment. Shimabe:Kyowa Hakko Kirin Co., Ltd.: Employment. Nishikawa:Kyowa Hakko Kirin Co., Ltd.: Employment. Yamawaki:Kyowa Hakko Kirin Co., Ltd: Employment. Iijima:Kyowa Hakko Kirin Co., Ltd: Employment. Hiura:Kyowa Hakko Kirin Co., Ltd.: Employment. Takahashi:Kyowa Hakko Kirin Co., Ltd.: Employment. Akashi:Asahi Kasei: Research Funding, Speakers Bureau; Chugai: Research Funding, Speakers Bureau; Bristol-Myers Squibb: Research Funding, Speakers Bureau; Novartis Pharma K.K.: Consultancy, Research Funding, Speakers Bureau; Kyowa Hakko Kirin Co., Ltd.: Consultancy, Research Funding, Speakers Bureau; Celgene: Research Funding, Speakers Bureau; Shionogi: Research Funding, Speakers Bureau; Astellas: Research Funding, Speakers Bureau. Tawara:Kyowa Hakko Kirin Co., Ltd: Employment.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Shiming Ye ◽  
Melvin I. Fox ◽  
Nicole A. Belmar ◽  
Mien Sho ◽  
Debra T. Chao ◽  
...  

Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fcγ receptor. The involvement of effector cells was further confirmed by immunohistochemistry, which revealed strong infiltration of CD45+ effector cells into tumor xenografts in responding models, but minimal infiltration in nonresponders. Consistent with the xenograft studies, human effector cells preferentially migrated toward in vivo-responsive tumor cells treated by enavatuzumab in vitro, with the majority of migratory cells being monocytes. Conditioned media from enavatuzumab-treated tumor cells contained elevated levels of chemokines, which might be responsible for enavatuzumab-triggered effector cell migration. These preclinical studies demonstrate that enavatuzumab can exert its potent antitumor activity by actively recruiting and activating myeloid effectors to kill tumor cells. Enavatuzumab-induced chemokines warrant further evaluation in clinical studies as potential biomarkers for such activity.


2021 ◽  
Vol 9 (2) ◽  
pp. e002026
Author(s):  
Daniele Caracciolo ◽  
Caterina Riillo ◽  
Andrea Ballerini ◽  
Giuseppe Gaipa ◽  
Ludovic Lhermitte ◽  
...  

BackgroundT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a poor cure rate for relapsed/resistant patients. Due to the lack of T-cell restricted targetable antigens, effective immune-therapeutics are not presently available and the treatment of chemo-refractory T-ALL is still an unmet clinical need. To develop novel immune-therapy for T-ALL, we generated an afucosylated monoclonal antibody (mAb) (ahuUMG1) and two different bispecific T-cell engagers (BTCEs) against UMG1, a unique CD43-epitope highly and selectively expressed by T-ALL cells from pediatric and adult patients.MethodsUMG1 expression was assessed by immunohistochemistry (IHC) on a wide panel of normal tissue microarrays (TMAs), and by flow cytometry on healthy peripheral blood/bone marrow-derived cells, on 10 different T-ALL cell lines, and on 110 T-ALL primary patient-derived cells. CD43-UMG1 binding site was defined through a peptide microarray scanning. ahuUMG1 was generated by Genetic Glyco-Engineering technology from a novel humanized mAb directed against UMG1 (huUMG1). BTCEs were generated as IgG1-(scFv)2 constructs with bivalent (2+2) or monovalent (2+1) CD3ε arms. Antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and redirected T-cell cytotoxicity assays were analysed by flow cytometry. In vivo antitumor activity of ahUMG1 and UMG1-BTCEs was investigated in NSG mice against subcutaneous and orthotopic xenografts of human T-ALL.ResultsAmong 110 T-ALL patient-derived samples, 53 (48.1%) stained positive (24% of TI/TII, 82% of TIII and 42.8% of TIV). Importantly, no expression of UMG1-epitope was found in normal tissues/cells, excluding cortical thymocytes and a minority (<5%) of peripheral blood T lymphocytes. ahUMG1 induced strong ADCC and ADCP on T-ALL cells in vitro, which translated in antitumor activity in vivo and significantly extended survival of treated mice. Both UMG1-BTCEs demonstrated highly effective killing activity against T-ALL cells in vitro. We demonstrated that this effect was specifically exerted by engaged activated T cells. Moreover, UMG1-BTCEs effectively antagonized tumor growth at concentrations >2 log lower as compared with ahuUMG1, with significant mice survival advantage in different T-ALL models in vivo.ConclusionAltogether our findings, including the safe UMG1-epitope expression profile, provide a framework for the clinical development of these innovative immune-therapeutics for this still orphan disease.


2018 ◽  
Vol 7 (5) ◽  
pp. 2064-2077 ◽  
Author(s):  
Yujin Chen ◽  
Haifeng Wang ◽  
Yigang Zuo ◽  
Ning Li ◽  
Mingxia Ding ◽  
...  

1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Sign in / Sign up

Export Citation Format

Share Document