Corrigendum to Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films [Carbon 84 (2015) 207–213]

Carbon ◽  
2020 ◽  
Vol 161 ◽  
pp. 562
Author(s):  
T. Bharathidasan ◽  
Tharangattu N. Narayanan ◽  
S. Sathyanaryanan ◽  
S.S. Sreejakumari
Carbon ◽  
2015 ◽  
Vol 84 ◽  
pp. 207-213 ◽  
Author(s):  
T. Bharathidasan ◽  
Tharangattu N. Narayanan ◽  
S. Sathyanaryanan ◽  
S.S. Sreejakumari

Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Pengfei Li ◽  
Yuncheng Li ◽  
Hongyue Chen ◽  
Hui Liu ◽  
Xianhua Cheng

A reduced graphene oxide coating was deposited on a titanium substrate for potential anti-friction applications in nano- or micro-mechanical systems. A γ-aminopropyltriethoxysilane coating was self-assembled on the substrate as an adhesive interlayer beforehand. The process parameters of self-assembly and hydrothermal reduction of graphene oxide coating were explored via water contact angle and tribological tests. Insufficient self-assembly duration of graphene oxide layer can be detected by water contact angle results, and the corresponding coating displayed a higher coefficient of friction and shorter anti-wear lifetime than the optimized one. Proper hydrothermal temperature and duration were also confirmed by its water contact angle, coefficient of friction and anti-wear lifetime. Noticeably, excessive hydrothermal temperature or duration would reduce the coefficient of friction, but diminish the anti-wear resistance. The optimized process parameters were confirmed as assembly duration of graphene oxide coating for 12 h, hydrothermal reduction duration of 6–8 h at 135 °C. Nano tribological behaviors of the obtained hydrothermal reduced graphene oxide coating by AFM tester were then investigated under various testing circumstances. The results showed that the coating performed reliable and low adhesion and friction forces under all circumstances. The nanowear resistance of the titanium substrate was significantly strengthened by the prepared coating.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Rafik Abbas ◽  
N. Elkhoshkhany ◽  
Ahmed Hefnawy ◽  
Shaker Ebrahim ◽  
Aya Rahal

A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hoan Thi Vuong Nguyen ◽  
Thu Hong Anh Ngo ◽  
Khai Dinh Do ◽  
Minh Ngoc Nguyen ◽  
Nu Thi To Dang ◽  
...  

In general, the polysulfone (PSf) membranes are popular choices for water treatment because they have high thermal stability and good chemical resistance. On the other hand, the filtration capacity of the polysulfone membrane is limited because of its low water flux and poor antifouling ability, which are caused by the low surface hydrophilicity of the membranes. In this research, blending of graphene oxide (GO) or graphene oxide-titanium dioxide (GO-TiO2) mixture into the polysulfone matrix had been carried out through the phase inversion method to enhance the hydrophilic and antifouling properties. Methods such as energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurement were used to examine the surface properties of the prepared membranes. Experimental results have led to a conclusion that graphene oxide can be stabilized into prepared membranes, and then, by reducing the water contact angle values, the surface of these membranes becomes hydrophilic, which increases the permeability and the water flux of methylene blue from the aqueous feed solution, improving the membrane’s antifouling resistance.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


Author(s):  
Wei Lee Lim ◽  
Shiplu Roy Chowdhury ◽  
Min Hwei Ng ◽  
Jia Xian Law

Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200–800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue’s collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.


2016 ◽  
Vol 879 ◽  
pp. 2524-2527
Author(s):  
Masazumi Okido ◽  
Kensuke Kuroda

Surface hydrophilicity is considered to have a strong influence on the biological reactions of bone-substituting materials. However, the influence of a hydrophilic or hydrophobic surface on the osteoconductivity is not completely clear. In this study, we produced super-hydrophilic and hydrophobic surface on Ti-and Zr-alloys. Hydrothermal treatment at 180 oC for 180 min. in the distilled water and immersion in x5 PBS(-) brought the super-hydrophilic surface (water contact angle < 10 (deg.)) and heat treatment of as-hydrothermaled the hydrophobic surface. The osteoconductivity of the surface treated samples with several water contact angle was evaluated by in vivo testing. The surface properties, especially water contact angle, strongly affected the osteoconductivity and protein adsorbability, and not the surface substance.


Sign in / Sign up

Export Citation Format

Share Document