Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes

2010 ◽  
Vol 79 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Vítor D. Alves ◽  
Nuno Costa ◽  
Isabel M. Coelhoso
2011 ◽  
Vol 1 ◽  
pp. 240-245 ◽  
Author(s):  
Vítor D. Alves ◽  
Rocío Castelló ◽  
Ana Rita Ferreira ◽  
Nuno Costa ◽  
Isabel M. Fonseca ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 101352
Author(s):  
Sharmila Patil ◽  
Ashok Kumar Bharimalla ◽  
Archana Mahapatra ◽  
Jyoti Dhakane-Lad ◽  
A. Arputharaj ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sandeep S. Laxmeshwar ◽  
D. J. Madhu Kumar ◽  
S. Viveka ◽  
G. K. Nagaraja

Cellulose has a potential to become a key resource in the development of biodegradable film composites. In this work, cellulose was modified by using 2-(Trifluromethyl)benzoylchloride by base-catalyzed reaction. Modification of cellulose was confirmed by IR studies. The biodegradable composite films were developed by film casting method using modified cellulose with Poly(vinyl alcohol) in different compositions. The film composites were characterized by mechanical, moisture absorption, gas barrier, and biodegradable properties. Obtained films have shown transparency and flexibility and displayed good mechanical properties. Film composites also showed good biodegradability. Better barrier properties showed by film composites as the percentage of modified cellulose increased. This indicates the importance of modified cellulose as a reinforcing agent. After evaluating these properties of film composites, we came to conclusion that these biocomposites can be used to membrane and packaging applications.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 433-442
Author(s):  
Hua He ◽  
Rui-jing Jia ◽  
Kai-qiang Dong ◽  
Jia-wen Huang ◽  
Zhi-yong Qin

Abstract A novel biodegradable protein-based material (UMSPIE) that consists of natural polymer soy protein isolate (SPI), ultrasonic-modified montmorillonite (UMMT), and ethylene glycol diglycidyl ether (EGDE) was produced by solution casting. Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) were used to characterize the chemical structure and micro-morphologies of as-synthesized protein-based composite films. The results showed that the interlayer structure of MMT was destroyed by ultrasonic treatment, and the hydrogen bonding between SPI chains and the ultrasound-treated MMT plates was enhanced. The synergistic effect of UMMT and EGDE on SPI molecules made the network structure of the UMSPIE film denser. In addition, the mechanical and barrier properties of the as-synthesized films were explored. Compared with pure soy protein film, the tensile strength of the UMSPIE film has an increase of 266.82% (increasing from 4.4 to 16.14 MPa). From the above, the modified strategy of layered silicates filling combining crosslinking agents is considered as an effective method to improve the functional properties of bio-based polymer composites.


2012 ◽  
Vol 127 (5) ◽  
pp. 3962-3969 ◽  
Author(s):  
Ruhul A. Khan ◽  
Dominic Dussault ◽  
Stephane Salmieri ◽  
Agnes Safrany ◽  
Monique Lacroix

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1883 ◽  
Author(s):  
Chao Peng ◽  
Guangxue Chen

In this study, poly(vinyl alcohol) (PVA) composite films enhanced by α-chitin nanowhiskers (ChWs) were prepared through heat treatment. The obtained membranes were assessed by means of FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis, regular light transmittance, mechanical tests, permeability and water absorption. The influence of the nano-component and heat treatment on the mechanical, thermal and water-resistant properties of the composite membrane were analyzed. From the results of the work, the produced films with excellent barrier properties and inexpensive raw processed materials have great prospects in packaging applications.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1143 ◽  
Author(s):  
Li Xu ◽  
Ying Li ◽  
Shiyu Gao ◽  
Yue Niu ◽  
Huaxuan Liu ◽  
...  

Blue luminescent carbon quantum dots (CQDs) were prepared from cyanobacteria by a hydrothermal method. The PL quantum yields of the obtained CQDs was 5.30%. Cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films were prepared, which could emit bright blue under UV light. FTIR characterization showed that the composite films had hydroxyl groups on the surface and no new groups were formed after combining the three materials. The photoluminescence (PL) spectra revealed that the emission of the prepared CQDs was excitation dependent. Studies on the water resistance performance and light barrier properties of the composite films showed that they possessed higher water resistance properties and better UV/infrared light barrier properties. Therefore, we report the cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films have the potential to be applied in flexible packaging materials, anti-fake materials, UV/infrared light barrier materials and so on.


Sign in / Sign up

Export Citation Format

Share Document