TEMPO-oxidized Nanochitin based hydrogels and Inter-structure Tunable Cryogels Prepared by Sequential Chemical and Physical Crosslinking

2021 ◽  
pp. 118495
Author(s):  
Liang Liu ◽  
Ying Liu ◽  
Huazhong Ma ◽  
Junhua Xu ◽  
Yimin Fan ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony C. Yu ◽  
Huada Lian ◽  
Xian Kong ◽  
Hector Lopez Hernandez ◽  
Jian Qin ◽  
...  

AbstractPhysical networks typically employ enthalpy-dominated crosslinking interactions that become more dynamic at elevated temperatures, leading to network softening. Moreover, standard mathematical frameworks such as time-temperature superposition assume network softening and faster dynamics at elevated temperatures. Yet, deriving a mathematical framework connecting the crosslinking thermodynamics to the temperature-dependent viscoelasticity of physical networks suggests the possibility for entropy-driven crosslinking interactions to provide alternative temperature dependencies. This framework illustrates that temperature negligibly affects crosslink density in reported systems, but drastically influences crosslink dynamics. While the dissociation rate of enthalpy-driven crosslinks is accelerated at elevated temperatures, the dissociation rate of entropy-driven crosslinks is negligibly affected or even slowed under these conditions. Here we report an entropy-driven physical network based on polymer-nanoparticle interactions that exhibits mechanical properties that are invariant with temperature. These studies provide a foundation for designing and characterizing entropy-driven physical crosslinking motifs and demonstrate how these physical networks access thermal properties that are not observed in current physical networks.


2020 ◽  
Vol 7 (3) ◽  
pp. 96
Author(s):  
Despoina Brasinika ◽  
Elias P. Koumoulos ◽  
Kyriaki Kyriakidou ◽  
Eleni Gkartzou ◽  
Maria Kritikou ◽  
...  

Bioinspired scaffolds mimicking natural bone-tissue properties holds great promise in tissue engineering applications towards bone regeneration. Within this work, a way to reinforce mechanical behavior of bioinspired bone scaffolds was examined by applying a physical crosslinking method. Scaffolds consisted of hydroxyapatite nanocrystals, biomimetically synthesized in the presence of collagen and l-arginine. Scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), microcomputed tomography, and nanoindentation. Results revealed scaffolds with bone-like nanostructure and composition, thus an inherent enhanced cytocompatibility. Evaluation of porosity proved the development of interconnected porous network with bimodal pore size distribution. Mechanical reinforcement was achieved through physical crosslinking with riboflavin irradiation, and nanoindentation tests indicated that within the experimental conditions of 45% humidity and 37 °C, photo-crosslinking led to an increase in the scaffold’s mechanical properties. Elastic modulus and hardness were augmented, and specifically elastic modulus values were doubled, approaching equivalent values of trabecular bone. Cytocompatibility of the scaffolds was assessed using MG63 human osteosarcoma cells. Cell viability was evaluated by double staining and MTT assay, while attachment and morphology were investigated by SEM. The results suggested that scaffolds provided a cell friendly environment with high levels of viability, thus supporting cell attachment, spreading and proliferation.


2020 ◽  
Vol 44 (10) ◽  
pp. 4061-4070 ◽  
Author(s):  
Yayu Li ◽  
Tianyang Zhou ◽  
Zhangyong Yu ◽  
Fei Wang ◽  
Dongjian Shi ◽  
...  

Two kinds of dual crosslinking hydrogels have adjustable mechanical properties, self-healing and self-recovery performances.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4028
Author(s):  
Chi Gong ◽  
Zhiyuan Kong ◽  
Xiaohong Wang

In three-dimensional (3D) bioprinting, the accuracy, stability, and mechanical properties of the formed structure are very important to the overall composition and internal structure of the complex organ. In traditional 3D bioprinting, low-temperature gelatinization of gelatin is often used to construct complex tissues and organs. However, the hydrosol relies too much on the concentration of gelatin and has limited formation accuracy and stability. In this study, we take advantage of the physical crosslinking of agarose at 35–40 °C to replace the single pregelatinization effect of gelatin in 3D bioprinting, and printing composite gelatin/alginate/agarose hydrogels at two temperatures, i.e., 10 °C and 24 °C, respectively. After in-depth research, we find that the structures manufactured by the pregelatinization method of agarose are significantly more accurate, more stable, and harder than those pregelatined by gelatin. We believe that this research holds the potential to be widely used in the future organ manufacturing fields with high structural accuracy and stability.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 239 ◽  
Author(s):  
Jie Wen ◽  
Xiaopeng Zhang ◽  
Mingwang Pan ◽  
Jinfeng Yuan ◽  
Zhanyu Jia ◽  
...  

Commonly synthetic polyethylene glycol polyurethane (PEG–PU) hydrogels possess poor mechanical properties, such as robustness and toughness, which limits their load-bearing application. Hence, it remains a challenge to prepare PEG–PU hydrogels with excellent mechanical properties. Herein, a novel double-crosslinked (DC) PEG–PU hydrogel was fabricated by combining chemical with physical crosslinking, where trimethylolpropane (TMP) was used as the first chemical crosslinker and polyphenol compound tannic acid (TA) was introduced into the single crosslinked PU network by simple immersion process. The second physical crosslinking was formed by numerous hydrogen bonds between urethane groups of PU and phenol hydroxyl groups in TA, which can endow PEG–PU hydrogel with good mechanical properties, self-recovery and a self-healing capability. The research results indicated that as little as a 30 mg·mL−1 TA solution enhanced the tensile strength and fracture energy of PEG–PU hydrogel from 0.27 to 2.2 MPa, 2.0 to 9.6 KJ·m−2, respectively. Moreover, the DC PEG–PU hydrogel possessed good adhesiveness to diverse substrates because of TA abundant catechol groups. This work shows a simple and versatile method to prepare a multifunctional DC single network PEG–PU hydrogel with excellent mechanical properties, and is expected to facilitate developments in the biomedical field.


Soft Matter ◽  
2018 ◽  
Vol 14 (21) ◽  
pp. 4327-4334 ◽  
Author(s):  
Na Sun ◽  
Panpan Sun ◽  
Aoli Wu ◽  
Xuanxuan Qiao ◽  
Fei Lu ◽  
...  

A thermo- and redox-responsive polyelectrolyte hydrogel was facilely constructed based on a primary chemical crosslinking and a secondary physical crosslinking.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2204
Author(s):  
Zhidan Wang ◽  
Jie Wu ◽  
Xiaoyu Shi ◽  
Fei Song ◽  
Wenli Gao ◽  
...  

Physical crosslinking and chemical crosslinking were used to further improve the mechanical properties and stability of the gel. A temperature/pH dual sensitive and double-crosslinked gel was prepared by the stereo-complex of HEMA-PLLA20 and HEMA-PDLA20 as a physical crosslinking agent, ethylene glycol dimethacrylate (EGDMA) as a chemical crosslinking agent, and azodiisobutyronitrile (AIBN) as an initiator for free radical polymerization. This paper focused on the performance comparison of chemical crosslinked gel, a physical crosslinked gel, and a dual crosslinked gel. The water absorption, temperature, and pH sensitivity of the three hydrogels were studied by a scanning electron microscope (SEM) and swelling performance research. We used a thermal analysis system (TGA) and dynamic viscoelastic spectrometer to study thermal properties and mechanical properties of these gels. Lastly, the in vitro drug release behavior of double-crosslinked hydrogel loaded with doxorubicin under different conditions was studied. The results show that the double-crosslinked and temperature/pH dual responsive hydrogels has great mechanical properties and good stability.


Sign in / Sign up

Export Citation Format

Share Document