All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation

2020 ◽  
Vol 31 (3) ◽  
pp. 869-874 ◽  
Author(s):  
Xuejing Cheng ◽  
Mengyu Li ◽  
Hui Wang ◽  
Yiyun Cheng
2015 ◽  
Vol 61 (7) ◽  
pp. 487-494 ◽  
Author(s):  
Devendra H. Dusane ◽  
Che O’May ◽  
Nathalie Tufenkji

Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4572
Author(s):  
Beata Kaczmarek ◽  
Oliwia Miłek ◽  
Marta Michalska-Sionkowska ◽  
Lidia Zasada ◽  
Marta Twardowska ◽  
...  

Sodium alginate and tannic acid are natural compounds that can be mixed with each other. In this study, we propose novel eco-friendly hydrogels for biomedical applications. Thus, we conducted the following assessments including (i) observation of the structure of hydrogels by scanning electron microscope; (ii) bioerosion and the concentration of released tannic acid from subjected material; (iii) dehydrogenase activity assay to determine antibacterial activity of prepared hydrogels; and (iv) blood and cell compatibility. The results showed that hydrogels based on sodium alginate/tannic acid exert a porous structure. The immersion in simulated body fluid (SBF) results in the biomineralization process occurring on their surface while the bioerosion studies revealed that the addition of tannic acid improves hydrogels’ stability proportional to its concentration. Besides, tannic acid release concentration depends on the type of hydrogels and the highest amount was noticed for those based on sodium alginate with the content of 30% tannic acid. Antibacterial activity of hydrogels was proven for both Gram-negative and Gram-positive bacteria, the hemolysis rate was below 5% and the viability of the cells was elevated with an increasing amount of tannic acid in hydrogels. Collectively, we assume that obtained materials make the imperative to consider them for biomedical applications.


2020 ◽  
Vol 22 (9) ◽  
pp. 440-445
Author(s):  
Rahul Upadhyay ◽  
Rahul Kumar ◽  
Manoj Jangra ◽  
Rohit Rana ◽  
Onkar S. Nayal ◽  
...  

2018 ◽  
Vol 9 (37) ◽  
pp. 4611-4616 ◽  
Author(s):  
Jiangna Guo ◽  
Jing Qin ◽  
Yongyuan Ren ◽  
Bin Wang ◽  
Hengqing Cui ◽  
...  

Imidazolium (Im), quaternary ammonium (Qa), and 1,4-diazabicyclo[2.2.2]octane-1,4-diium (DABCO-diium) cation-based small molecule cationic compounds and their corresponding side-chain/main-chain cationic polymers were synthesized.


2020 ◽  
Vol 32 (6) ◽  
pp. 1491-1496
Author(s):  
Fatimah M. Alzahrani ◽  
Stephen G. Yeates ◽  
Michelle Webb ◽  
Hind Ali Alghamdi

In this study, the antibacterial activity of tannic acid/amphiphilic cationic polymer (poly{2-[(methacryloyloxy)ethyl]trimethyl-ammonium chloride}, PMADQUAT) and tannic acid mixtures was examined on the strains of Gram-positive (S. aureus) and Gram-negative (E. coli CI2, E. coli K12, Klebsiella pneumonia and P. aeruginosa) bacteria. Tannic acid exhibited the antibacterial activity against all the studied bacterial strains. The ester linkage between glucose and gallic acid is vital for the antimicrobial activity of tannic acid. Tannic acid inhibited the growth of S. aureus and E. coli K12 (1 wt%) and reduced the growth of P. aeruginosa to 23%. Mixing cationic polymers having different structures (statistical copolymer, homopolymer and diblock polymer) with tannic acid lead to an increase in antibacterial activity of tannic acid and the stability and clarity of mixtures was higher than that of a pure tannic acid solution. Tannic acid/diblock polymer and tannic acid/homopolymer mixtures (0.1 wt%) were excellent for inhibiting the growth of planktonic E. coli K12 bacteria, and a low concentration (0.0001 wt%) of tannic acid/diblock polymer reduced its growth to 19%. By contrast, the tannic acid/statistical polymer mixture (0.0001 wt%) was excellent for inhibiting the growth of Gram-positive S. aureus bacteria.


2020 ◽  
Vol 3 (7) ◽  
pp. 6985-6994
Author(s):  
Kasturi T. Sarang ◽  
Xiaoyi Li ◽  
Andrea Miranda ◽  
Tanguy Terlier ◽  
Eun-Suok Oh ◽  
...  

Author(s):  
Sara S. El Zahed ◽  
Shawn French ◽  
Maya A. Farha ◽  
Garima Kumar ◽  
Eric D. Brown

Discovering new Gram-negative antibiotics has been a challenge for decades. This has been largely attributed to a limited understanding of the molecular descriptors governing Gram-negative permeation and efflux evasion. Herein, we address the contribution of efflux using a novel approach that applies multivariate analysis, machine learning, and structure-based clustering to some 4,500 actives from a small molecule screen in efflux-compromised Escherichia coli. We employed principal-component analysis and trained two decision tree-based machine learning models to investigate descriptors contributing to the antibacterial activity and efflux susceptibility of these actives. This approach revealed that the Gram-negative activity of hydrophobic and planar small molecules with low molecular stability is limited to efflux-compromised E. coli. Further, molecules with reduced branching and compactness showed increased susceptibility to efflux. Given these distinct properties that govern efflux, we developed the first machine learning model, called Susceptibility to Efflux Random Forest (SERF), as a tool to analyze the molecular descriptors of small molecules and predict those that could be susceptible to efflux pumps in silico. Here, SERF demonstrated high accuracy in identifying such molecules. Further, we clustered all 4,500 actives based on their core structures and identified distinct clusters highlighting side chain moieties that cause marked changes in efflux susceptibility. In all, our work reveals a role for physicochemical and structural parameters in governing efflux, presents a machine learning tool for rapid in silico analysis of efflux susceptibility, and provides a proof of principle for the potential of exploiting side chain modification to design novel antimicrobials evading efflux pumps.


Author(s):  
Boonlom Thavornyutikarn ◽  
Tareerat Lertwimol ◽  
Wasana Kosorn ◽  
Weerawan Hankamolsiri ◽  
Nutdanai Nampichai ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
pp. 173-181 ◽  
Author(s):  
Aldo S. de Oliveira ◽  
Luiz F. S. de Souza ◽  
Ricardo J. Nunes ◽  
Susana Johann ◽  
David L. Palomino-Salcedo ◽  
...  

Background: Bacterial resistance to antibiotics is a growing problem in all countries and has been discussed worldwide. In this sense, the development of new drugs with antibiotic properties is highly desirable in the context of medicinal chemistry. Methodology: In this paper we investigate the antioxidant and antibacterial potential of sulfonamides derived from carvacrol, a small molecule with drug-like properties. Most sulfonamides had antioxidant and antibacterial potential, especially compound S-6, derived from beta-naphthylamine. Result: To understand the possible mechanisms of action involved in biological activity, the experimental results were compared with molecular docking data. Conclusion: This research allows appropriate discussion on the identified structure activity relationships.


Sign in / Sign up

Export Citation Format

Share Document