Steam activation of tyre pyrolytic carbon black: Kinetic study in a thermobalance

2007 ◽  
Vol 126 (2-3) ◽  
pp. 79-85 ◽  
Author(s):  
A. Aranda ◽  
R. Murillo ◽  
T. García ◽  
M.S. Callén ◽  
A.M. Mastral
2021 ◽  
pp. 0734242X2110047
Author(s):  
Junqing Xu ◽  
Jiaxue Yu ◽  
Wenzhi He ◽  
Juwen Huang ◽  
Junshi Xu ◽  
...  

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


2018 ◽  
Vol 36 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Xue Zhang ◽  
Hengxiang Li ◽  
Qing Cao ◽  
Li’e Jin ◽  
Fumeng Wang

The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.


2021 ◽  
Vol 44 ◽  
pp. 103372
Author(s):  
Guosai Jiang ◽  
Jun Guo ◽  
Yanzhi Sun ◽  
Xiaoguang Liu ◽  
Junqing Pan

1996 ◽  
Vol 46 (1) ◽  
pp. 1-15 ◽  
Author(s):  
A. Chaala ◽  
H. Darmstadt ◽  
C. Roy

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4445 ◽  
Author(s):  
Zuzana Jankovská ◽  
Marek Večeř ◽  
Ivan Koutník ◽  
Lenka Matějová

Waste scrap tyres were thermally decomposed at the temperature of 600 °C and heating rate of 10 °C·min−1. Decomposition was followed by the TG analysis. The resulting pyrolytic carbon black was chemically activated by a KOH solution at 800 °C. Activated and non-activated carbon black were investigated using high pressure thermogravimetry, where adsorption isotherms of N2, CO2, and cyclohexane were determined. Isotherms were determined over a wide range of pressure, 0.03–4.5 MPa for N2 and 0.03–2 MPa for CO2. In non-activated carbon black, for the same pressure and temperature, a five times greater gas uptake of CO2 than N2 was determined. Contrary to non-activated carbon black, activated carbon black showed improved textural properties with a well-developed irregular mesoporous-macroporous structure with a significant amount of micropores. The sorption capacity of pyrolytic carbon black was also increased by activation. The uptake of CO2 was three times and for cyclohexane ten times higher in activated carbon black than in the non-activated one. Specific surface areas evaluated from linearized forms of Langmuir isotherm and the BET isotherm revealed that for both methods, the values are comparable for non-activated carbon black measured by CO2 and for activated carbon black measured by cyclohexane. It was found out that the N2 sorption capacity of carbon black depends only on its specific surface area size, contrary to CO2 sorption capacity, which is affected by both the size of specific surface area and the nature of carbon black.


2004 ◽  
Vol 275 (1-2) ◽  
pp. 15-24 ◽  
Author(s):  
Céline Sayag ◽  
Mersaka Benkhaled ◽  
Sebastian Suppan ◽  
Janusz Trawczynski ◽  
Gérald Djéga-Mariadassou

Sign in / Sign up

Export Citation Format

Share Document