Mechanistic insights into chemical conditioning by polyacrylamide with different charge densities and its impacts on sludge dewaterability

2021 ◽  
Vol 410 ◽  
pp. 128425
Author(s):  
Wei Wu ◽  
Jinxing Ma ◽  
Jun Xu ◽  
Zhiwei Wang
Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Guilherme Volpe Bossa ◽  
Sylvio May

Poisson–Boltzmann theory provides an established framework to calculate properties and free energies of an electric double layer, especially for simple geometries and interfaces that carry continuous charge densities. At sufficiently small length scales, however, the discreteness of the surface charges cannot be neglected. We consider a planar dielectric interface that separates a salt-containing aqueous phase from a medium of low dielectric constant and carries discrete surface charges of fixed density. Within the linear Debye-Hückel limit of Poisson–Boltzmann theory, we calculate the surface potential inside a Wigner–Seitz cell that is produced by all surface charges outside the cell using a Fourier-Bessel series and a Hankel transformation. From the surface potential, we obtain the Debye-Hückel free energy of the electric double layer, which we compare with the corresponding expression in the continuum limit. Differences arise for sufficiently small charge densities, where we show that the dominating interaction is dipolar, arising from the dipoles formed by the surface charges and associated counterions. This interaction propagates through the medium of a low dielectric constant and alters the continuum power of two dependence of the free energy on the surface charge density to a power of 2.5 law.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Bimalendu Ray ◽  
Martin Schütz ◽  
Shuvam Mukherjee ◽  
Subrata Jana ◽  
Sayani Ray ◽  
...  

Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure–activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug–target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.


2021 ◽  
Vol 284 ◽  
pp. 112020
Author(s):  
Yanting Dong ◽  
Yanwen Shen ◽  
Dongdong Ge ◽  
Chang Bian ◽  
Haiping Yuan ◽  
...  

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Simeon Hellerman ◽  
Nozomu Kobayashi ◽  
Shunsuke Maeda ◽  
Masataka Watanabe

Abstract As a sequel to previous work, we extend the study of the ground state configuration of the D = 3, Wilson-Fisher conformal O(4) model. In this work, we prove that for generic ratios of two charge densities, ρ1/ρ2, the ground-state configuration is inhomogeneous and that the inhomogeneity expresses itself towards longer spatial periods. This is the direct extension of the similar statements we previously made for ρ1/ρ2 ≪ 1. We also compute, at fixed set of charges, ρ1, ρ2, the ground state energy and the two-point function(s) associated with this inhomogeneous configuration on the torus. The ground state energy was found to scale (ρ1 + ρ2)3/2, as dictated by dimensional analysis and similarly to the case of the O(2) model. Unlike the case of the O(2) model, the ground also strongly violates cluster decomposition in the large-volume, fixed-density limit, with a two-point function that is negative definite at antipodal points of the torus at leading order at large charge.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 41
Author(s):  
Katrina Cruz ◽  
Yu-Hsiu Wang ◽  
Shaina A. Oake ◽  
Paul A. Janmey

Filamentous anionic polyelectrolytes are common in biological materials. Some examples are the cytoskeletal filaments that assemble into networks and bundled structures to give the cell mechanical resistance and that act as surfaces on which enzymes and other molecules can dock. Some viruses, especially bacteriophages are also long thin polyelectrolytes, and their bending stiffness is similar to those of the intermediate filament class of cytoskeletal polymers. These relatively stiff, thin, and long polyelectrolytes have charge densities similar to those of more flexible polyelectrolytes such as DNA, hyaluronic acid, and polyacrylates, and they can form interpenetrating networks and viscoelastic gels at volume fractions far below those at which more flexible polymers form hydrogels. In this report, we examine how different types of divalent and multivalent counterions interact with two biochemically different but physically similar filamentous polyelectrolytes: Pf1 virus and vimentin intermediate filaments (VIF). Different divalent cations aggregate both polyelectrolytes similarly, but transition metal ions are more efficient than alkaline earth ions and their efficiency increases with increasing atomic weight. Comparison of these two different types of polyelectrolyte filaments enables identification of general effects of counterions with polyelectrolytes and can identify cases where the interaction of the counterions and the filaments exhibits stronger and more specific interactions than those of counterion condensation.


1975 ◽  
Vol 53 (4) ◽  
pp. 596-603 ◽  
Author(s):  
Roderick E. Wasylishen ◽  
Thomas R. Clem ◽  
Edwin D. Becker

Carbon-13 and proton chemical shifts have been measured for several monosubstituted isothiazoles. Substituent effects upon these chemical shifts are compared with those observed for monosubstituted benzenes, pyridines, and thiophenes. In general the observed substituent effects in the isothiazoles and thiophenes closely parallel one another. Correlations between the observed carbon-13 Chemical shifts and CNDO/2 calculated charge densities are examined.


2012 ◽  
Vol 8 (S291) ◽  
pp. 580-582
Author(s):  
R. Yuen ◽  
R. N. Manchester ◽  
M. Burgay ◽  
F. Camilo ◽  
M. Kramer ◽  
...  

AbstractWe investigate the changes in polarization position angle in radiation from pulsar A around the eclipse in the Double Pulsar system PSR J0737-3039A/B at the 20 cm and 50 cm wavelengths using the Parkes 64-m radio telescope. The changes are ~ 2σ during and shortly after the eclipse at 20 cm but less significant at 50 cm. We show that the changes in position angle during the eclipse can be modelled by differential synchrotron absorption in the eclipse regions. Position angle changes after the eclipse are interpreted as Faraday rotation in the magnetotail of pulsar B. Implied charge densities are consistent with the Goldreich-Julian density, suggesting that the particle energies in the magnetotail are mildly relativistic.


Sign in / Sign up

Export Citation Format

Share Document