Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature

2021 ◽  
Vol 411 ◽  
pp. 128441
Author(s):  
Hye-Bin Kim ◽  
Jong-Gook Kim ◽  
Taesun Kim ◽  
Daniel S. Alessi ◽  
Kitae Baek
Author(s):  
H. Ishigooka ◽  
S. Ueno ◽  
L.M. Hjelmeland ◽  
M.B. Landers ◽  
K. Ogawa

Introduction: We have demonstrated that Glucose-6-phosphatase (G6Pase) activity is localized to the endoplasmic reticulum and nuclear envelope of Mueller glia in the normal and pathological guinea pig retina. Using a combination of this cytochemical technique and high voltage electron microscopy, the distribution of nuclear pores could be clearly observed on the nuclear envelope of Mueller glia because of their anatomical lack of reaction products. This technique was developed to study the three-dimensional structure of nuclei and to calculate total numbers of nuclear pores utilizing a computer graphic analysis system in the normal and pathological retina.Materials and methods: Normal and photocoagulated retina of pigmented adult guinea pigs were perfused with a cold mixture of 0.25% glutaraldehyde and 2% paraformaldehyde in 0.1M cacodylate buffer, and the enucleated globes were hemisected and immersed in the same fixative for 30 min. After sectioning and incubation in the reaction medium for the detection of G6Pase activity by the method of Wachstein-Meisel, the sections were postfixed, dehydrated and embedded in Spurr’s epoxy resin. Serial thick sections (1.0um) were prepared for the observation by a Hitachi high voltage electron microscope (H 1250-M) with an accelerating voltage of 1000 Kv. and pictures were analyzed and three-dimensionally reconstructed by TRI (RATOC Co., Ltd.).


1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


2018 ◽  
Author(s):  
Ping Peng ◽  
Fang-Fang Li ◽  
Xinye Liu ◽  
Jiawen Ren ◽  
jessica stuart ◽  
...  

The rate of ammonia production by the <u>chemical </u>oxidation of iron, N<sub>2</sub>(from air or as pure nitrogen) and water is studied as a function of (1) iron particle size, (2) iron concentration, (3) temperature, (4) pressureand (5) concentration of the alkaline reaction medium. The reaction meduium consists of an aqueous solution of equal molal concentrations of NaOH and KOH (Na<sub>0.5</sub>K<sub>0.5</sub>OH). We had previously reported on the <u>chemical </u>reaction of iron and nitrogen in alkaline medium to ammonia as an intermediate step in the <u>electrochemical </u>synthesis of ammonia by a nano-sized iron oxide electrocatlyst. Here, the intermediate <u>chemical </u>reaction step is exclusively explored. The ammonia production rate increases with temperature (from 20 to 250°C), pressure (from 1 atm to 15 atm of air or N<sub>2</sub>), and exhibits a maximum rate at an electrolyte concentration of 8 molal Na<sub>0,5</sub>K<sub>0,5</sub>OH in a sealed N<sub>2</sub>reactor. 1-3 µm particle size Fe drive the highest observed ammonia production reaction rate. The Fe mass normalized rate of ammonia production increases with decreasing added mass of the Fe reactant reaching a maximum observed rate of 2.2x10<sup>-4</sup>mole of NH<sub>3</sub>h<sup>-1</sup>g<sup>-1</sup>for the reaction of 0.1 g of 1-3 µm Fe in 200°C 8 molal Na<sub>0.5</sub>K<sub>0.5</sub>OH at 15 atm. Under these conditions 5.1 wt% of the iron reacts to form NH<sub>3</sub>via the reaction N<sub>2</sub>+ 2Fe + 3H<sub>2</sub>O ®2NH<sub>3</sub>+ Fe<sub>2</sub>O<sub>3</sub>.


2019 ◽  
Vol 23 (11) ◽  
pp. 1214-1238 ◽  
Author(s):  
Navjeet Kaur ◽  
Pranshu Bhardwaj ◽  
Meenu Devi ◽  
Yamini Verma ◽  
Neha Ahlawat ◽  
...  

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.


2020 ◽  
Vol 23 (23) ◽  
pp. 2626-2634
Author(s):  
Saiedeh Kamalifar ◽  
Hamzeh Kiyani

: An efficient and facial one-pot synthesis of 4-aryl-3,4-dihydrobenzo[g]quinoline- 2,5,10(1H)-triones was developed for the first time. The process proceeded via the three-component cyclocondensation of 2-amino-1,4-naphthoquinone with Meldrum’s acid and substituted benzaldehydes under green conditions. The fused 3,4-dihydropyridin-2(1H)- one-ring naphthoquinones have been synthesized with good to high yields in refluxing ethanol as a green reaction medium. This protocol is simple and effective as well as does not involve the assistance of the catalyst, additive, or hazardous solvents.


2020 ◽  
Vol 7 (3) ◽  
pp. 183-195
Author(s):  
Musa Özil ◽  
Emre Menteşe

Background: Benzoxazole, containing a 1,3-oxazole system fused with a benzene ring, has a profound effect on medicinal chemistry research owing to its important pharmacological activities. On the other hand, the benzoxazole derivative has exhibited important properties in material science. Especially in recent years, microwave-assisted synthesis is a technique that can be used to increase diversity and quick research in modern chemistry. The utilization of microwave irradiation is beneficial for the synthesis of benzoxazole in recent years. In this focused review, we provide a metaanalysis of studies on benzoxazole in different reaction conditions, catalysts, and starting materials by microwave technique so far, which is different from conventional heating. Methods: Synthesis of different kind of benzoxazole derivatives have been carried out by microwave irradiation. The most used method to obtain benzoxazoles is the condensation of 2-aminophenol or its derivatives with aldehydes, carboxylic acids, nitriles, isocyanates, and aliphatic amines. Results: Benzoxazole system and its derivatives have exhibited a broad range of pharmacological properties. Thus, many scientists have remarked on the importance of the synthesis of different benzoxazole derivatives. Conventional heating is a relatively inefficient and slow method to convey energy in orientation to the reaction medium. However, the microwave-assisted heating technique is a more effective interior heating by straight coupling of microwave energy with the molecules. Conclusion: In this review, different studies were presented on the recent details accessible in the microwave- assisted techniques on the synthesis of the benzoxazole ring. It presents all examples of such compounds that have been reported from 1996 to the present. Benzoxazoles showed an extensive class of chemical substances not only in pharmaceutical chemistry but also in dyestuff, polymer industries, agrochemical, and optical brighteners. Thus the development of fast and efficient achievement of benzoxazoles with a diversity of substituents in high yield is getting more noteworthy. As shown in this review, microwave-assisted synthesis of benzoxazoles is a very effective and useful technique.


Sign in / Sign up

Export Citation Format

Share Document