Eco-friendly magnetic biochar: an effective trap for nanoplastics of varying surface functionality and size in the aqueous environment

2021 ◽  
pp. 129405
Author(s):  
Nisha Singh ◽  
Nitin Khandelwal ◽  
Zahid Ahmad Ganie ◽  
Ekta Tiwari ◽  
Gopala Krishna Darbha
Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3781
Author(s):  
Kamil Kayode Katibi ◽  
Khairul Faezah Yunos ◽  
Hasfalina Che Man ◽  
Ahmad Zaharin Aris ◽  
Mohd Zuhair Mohd Mohd Nor ◽  
...  

Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous chloride as magnetic medium via chemical co-precipitation technique. In this experimental study, the influence of operating factors comprising contact time (20–240 min), pH (3.0–12.0), adsorbent dose (0.2–0.8 g), and starting concentrations of BPA (8.0–150 ppm) were studied in removing BPA during batch adsorption system using neat biochar and magnetic biochar. It was observed that the magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM), surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX), and chemical composition (XRD) of the adsorbents were examined. The experimental results demonstrated that the sorption isotherm and kinetics were suitably described by pseudo-second-order model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded that π-π electron acceptor–donor interaction (EAD), hydrophobic interaction, and hydrogen bond were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC.


Author(s):  
Jean-Paul Revel

In the last 50+ years the electron microscope and allied instruments have led the way as means to acquire spatially resolved information about very small objects. For the material scientist and the biologist both, imaging using the information derived from the interaction of electrons with the objects of their concern, has had limitations. Material scientists have been handicapped by the fact that their samples are often too thick for penetration without using million volt instruments. Biologists have been handicapped both by the problem of contrast since most biological objects are composed of elements of low Z, and also by the requirement that sample be placed in high vacuum. Cells consist of 90% water, so elaborate precautions have to be taken to remove the water without losing the structure altogether. We are now poised to make another leap forwards because of the development of scanned probe microscopies, particularly the Atomic Force Microscope (AFM). The scanning probe instruments permit resolutions that electron microscopists still work very hard to achieve, if they have reached it yet. Probably the most interesting feature of the AFM technology, for the biologist in any case, is that it has opened the dream of high resolution in an aqueous environment. There are few restrictions on where the instrument can be used. AFMs can be made to work in high vacuum, allowing the material scientist to avoid contamination. The biologist can be made happy as well. The tips used for detection are made of silicon nitride,(Si3N4), and are essentially unaffected by exposure to physiological saline (about which more below). So here is an instrument which can look at living whole cells and at atoms as well.


2020 ◽  
Author(s):  
Robert Stepic ◽  
Lara Jurković ◽  
Ksenia Klementyeva ◽  
Marko Ukrainczyk ◽  
Matija Gredičak ◽  
...  

In many living organisms, biomolecules interact favorably with various surfaces of calcium carbonate. In this work, we have considered the interactions of aspartate (Asp) derivatives, as models of complex biomolecules, with calcite. Using kinetic growth experiments, we have investigated the inhibition of calcite growth by Asp, Asp2 and Asp3.This entailed the determination of a step-pinning growth regime as well as the evaluation of the adsorption constants and binding free energies for the three species to calcite crystals. These latter values are compared to free energy profiles obtained from fully atomistic molecular dynamics simulations. When using a flat (104) calcite surface in the models, the measured trend of binding energies is poorly reproduced. However, a more realistic model comprised of a surface with an island containing edges and corners, yields binding energies that compare very well with experiments. Surprisingly, we find that most binding modes involve the positively charged, ammonium group. Moreover, while attachment of the negatively charged carboxylate groups is also frequently observed, it is always balanced by the aqueous solvation of an equal or greater number of carboxylates. These effects are observed on all calcite features including edges and corners, the latter being associated with dominant affinities to Asp derivatives. As these features are also precisely the active sites for crystal growth, the experimental and theoretical results point strongly to a growth inhibition mechanism whereby these sites become blocked, preventing further attachment of dissolved ions and halting further growth.


2018 ◽  
Author(s):  
Pierre Marcasuzaa ◽  
Samuel Pearson ◽  
Karell Bosson ◽  
Laurence Pessoni ◽  
Jean-Charles Dupin ◽  
...  

A hierarchically structured platform was obtained from spontaneous self-assembly of a poly(styrene)-<i>b</i>-poly(vinylbenzylchloride) (PS-<i>b</i>-PVBC) block copolymer (BCP) during breath figure (BF) templating. The BF process using a water/ethanol atmosphere gave a unique double porosity in which hexagonally arranged micron-sized pores were encircled by a secondary population of smaller, nano-sized pores. A third level of structuration was simultaneously introduced between the pores by directed BCP self-assembly to form out-of-the-plane nano-cylinders, offering very rapid bottom-up access to a film with unprecedented triple structure which could be used as a reactive platform for introducing further surface functionality. The surface nano-domains of VBC were exploited as reactive nano-patterns for site-specific chemical functionalization by firstly substituting the exposed chlorine moiety with azide, then “clicking” an alkyne by copper (I) catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). Successful chemical modification was verified by NMR spectroscopy, FTIR spectroscopy, and XPS, with retention of the micro- and nanostructuration confirmed by SEM and AFM respectively. Protonation of the cyclotriazole surface groups triggered a switch in macroscopic behavior from a Cassie-Baxter state to a Wenzel state, highlighting the possibility of producing responsive surfaces with hierarchical structure.


2020 ◽  
Vol 65 (6) ◽  
pp. 1058-1064
Author(s):  
С.В. Пастон ◽  
◽  
А.М. Поляничко ◽  
О.В. Шуленина ◽  
Д.Н. Осинникова ◽  
...  

The aqueous environment and ionic surrounding are the most important factors determining the conformation of DNA and its functioning in the cell. The specificity of the interaction between DNA and cations is especially pronounced with a decrease in water activity. In this work, we studied the B-A transition in high molecular weight DNA with a decrease of humidity in the film with different contents of Na+ ions using FTIR spectroscopy. The IR spectrum of DNA is not only very sensitive to the state of its secondary structure, but also allows us to estimate the amount of water bound to DNA. Upon dehydration of the DNA film, changes characteristic of the B-A transition were observed in the IR absorption spectrum. Using thermogravimetric analysis, it was shown that the degree of DNA hydration reaches the saturation level at a relative humidity of 60% and decreases slightly upon further drying. It has been established that with increasing Na+ concentration, the amount of water strongly bound to DNA decreases. Along with it, sodium ions destroy the hydration shell of DNA and are able to interact directly with phosphate groups.


Author(s):  
L H Baldaniya ◽  
Sarkhejiya N A

Hydrogels are the material of choice for many applications in regenerative medicine due to their unique properties including biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics. Hydrogel (also called Aquagel) is a network of polymer chains that are hydrophilic, sometimes found as a colloidal gel in which water is the dispersion medium. Hydrogels are highly absorbent (contain ~99.9% water), natural or synthetic polymers. Hydrogel also possess a degree of flexibility very similar to natural tissue, due to its significant water content. It can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures. Also serve as adhesives or barriers between tissue and material surfaces. The positive effect of hydrogels on wounds and enhanced wound healing process has been proven. Hydrogels provide a warm, moist environment for wound that makes it heal faster in addition to its useful mucoadhesive properties. Moreover, hydrogels can be used as carriers for liposomes containing variety of drugs, such as antimicrobial drugs. Hydrogels are water swollen polymer matrices, with a tendency to imbibe water when placed in aqueous environment. This ability to swell, under biological conditions, makes it an ideal material for use in drug delivery and immobilization of proteins, peptides, and other biological compounds. Hydrogels have been extensively investigated for use as constructs to engineer tissues in vitro. This review describes the properties, classification, preparation methods, applications, various monomer used in formulation and development of hydrogel products.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Dumitra Lucan ◽  
Manuela Fulger ◽  
Gheorghita Jinescu

The Steam Generators (SG), equipment that ensures the connection between the primary and secondary circuits, creates several safety problems during operation, mainly due to corrosion and mechanical damages. To provide information about the corrosion behaviour of the structural materials from CANDU SG under normal and abnormal conditions of operation and to identify the failure types produced by the corrosion were performed corrosion experiments consisting in chemical accelerated tests, static autoclaving and electrochemical methods. The gravimetric method, optical metallographic microscopy, XRD and EDS analysis, as well as electrochemical measurements have been used to evaluate the corrosion behavior of the steam generator tubes material (Incoloy-800).


Carbon ◽  
2000 ◽  
Vol 38 (5) ◽  
pp. 669-674 ◽  
Author(s):  
H Benaddi ◽  
T.J Bandosz ◽  
J Jagiello ◽  
J.A Schwarz ◽  
J.N Rouzaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document