From ultrastiff to soft materials: Exploiting dynamic metal–ligand cross-links to access polymer hydrogels combining customized mechanical performance and tailorable functions by controlling hydrogel mechanics

2021 ◽  
Vol 419 ◽  
pp. 129528
Author(s):  
Agniva Dutta ◽  
Krishanu Ghosal ◽  
Kishor Sarkar ◽  
Debabrata Pradhan ◽  
Rajat K. Das
2015 ◽  
Vol 27 (13) ◽  
pp. 4808-4813 ◽  
Author(s):  
Ian M. Henderson ◽  
Hope A. Quintana ◽  
Julio A. Martinez ◽  
Walter F. Paxton

2013 ◽  
Vol 10 (89) ◽  
pp. 20130711 ◽  
Author(s):  
F. Barthelat ◽  
M. Mirkhalaf

How to arrange soft materials with strong but brittle reinforcements to achieve attractive combinations of stiffness, strength and toughness is an ongoing and fascinating question in engineering and biological materials science. Recent advances in topology optimization and bioinspiration have brought interesting answers to this question, but they provide only small windows into the vast design space associated with this problem. Here, we take a more global approach in which we assess the mechanical performance of thousands of possible microstructures. This exhaustive exploration gives a global picture of structure–property relationships and guarantees that global optima can be found. Landscapes of optimum solutions for different combinations of desired properties can also be created, revealing the robustness of each of the solutions. Interestingly, while some of the major hybrid designs used in engineering are absent from the set of solutions, the microstructures emerging from this process are reminiscent of materials, such as bone, nacre or spider silk.


2006 ◽  
Vol 4 (13) ◽  
pp. 373-380 ◽  
Author(s):  
Farrell R Kersey ◽  
David M Loveless ◽  
Stephen L Craig

A family of hybrid polymer gels is described, in which covalent cross-links create a permanent, stiff scaffold onto which reversible metal–ligand coordinative cross-links are added. The reversible metal–ligand interactions are shown to bear mechanical stress within the hybrid gel, and relaxations in response to that applied stress are consistent with the stress-free kinetics of ligand exchange in systems that model the reversible cross-links. The stress-induced dissociation of a model metal–ligand complex is examined by a single-molecule force spectroscopy, and its mechanical response is compared with a previously studied complex. The mechanical response of the individual interactions is relevant to those found in the family of hybrid gels, and the modular platform is therefore suitable for the study of stress-induced molecular dissociations, and their subsequent repair, within a macroscopic material of fixed structure.


2004 ◽  
Vol 844 ◽  
Author(s):  
Jessica D. Kaufman ◽  
Catherine M. Klapperich

AbstractImplants, tissue engineering scaffold materials, drug delivery and bio-micro electromechanical systems (BioMEMs) all use polymer or hydrogel materials. These applications require both mechanical performance and successful integration of the material into a biological environment. Mechanical strength, storage and loss moduli, wear resistance and surface adhesion properties are all critical in biomedical device design and can be determined using nanoindentation. The difficulty of obtaining large samples of specialized materials, and the complexity of testing soft materials in traditional materials testing apparatus, make nanoindentation an attractive alternative. Our previous research using nanoindentation to measure the surface mechanical properties of non-hydrated polymers led to improvement in nanoindentation testing protocols. One of the major challenges in using this technique for hydrogels and tissues is maintaining and controlling hydration of the materials during the test. Here we describe the design of a microfluidic platform for nanoindentation that facilitates continuous hydration of hydrogel samples and high throughput nanomechanical testing. Data from creep experiments on synthetic, hydrated poly-2-hydroxyethyl methacrylate (poly-HEMA) are presented. In addition, we show data to validate the materials properties determined from nanomechanical testing by complementary testing. Finally, the data is fitted to a phenomenological model for viscoelastic materials, specifically the three-element standard linear solid model used by Cheng et al. [1].


2020 ◽  
Vol 298 (12) ◽  
pp. 1699-1713
Author(s):  
Solomiia Borova ◽  
Victor Tokarev ◽  
Philipp Stahlhut ◽  
Robert Luxenhofer

Abstract Hydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.


2019 ◽  
Vol 6 (5) ◽  
pp. 970-981 ◽  
Author(s):  
Liang Xiong Lyu ◽  
Fen Li ◽  
Kang Wu ◽  
Pan Deng ◽  
Seung Hee Jeong ◽  
...  

Abstract Soft robotics with new designs, fabrication technologies and control strategies inspired by nature have been totally changing our view on robotics. To fully exploit their potential in practical applications, untethered designs are preferred in implementation. However, hindered by the limited thermal/mechanical performance of soft materials, it has been always challenging for researchers to implement untethered solutions, which generally involve rigid forms of high energy-density power sources or high energy-density processes. A number of insects in nature, such as rove beetles, can gain a burst of kinetic energy from the induced surface-energy gradient on water to return to their familiar habitats, which is generally known as Marangoni propulsion. Inspired by such a behavior, we report the agile untethered mobility of a fully soft robot in liquid based on induced energy gradients and also develop corresponding fabrication and maneuvering strategies. The robot can reach a speed of 5.5 body lengths per second, which is 7-fold more than the best reported, 0.69 (body length per second), in the previous work on untethered soft robots in liquid by far. Further controlling the robots, we demonstrate a soft-robot swarm that can approach a target simultaneously to assure a hit with high accuracy. Without employing any high energy-density power sources or processes, our robot exhibits many attractive merits, such as quietness, no mechanical wear, no thermal fatigue, invisibility and ease of robot fabrication, which may potentially impact many fields in the future.


2018 ◽  
Vol 18 (06) ◽  
pp. 1850062
Author(s):  
TESNIM KRAIEM ◽  
ABDELWAHED BARKAOUI ◽  
TAREK MERZOUKI ◽  
MOEZ CHAFRA

Bone is a multiscale combination of collagen molecules merged with mineral crystals. Its high rigidity and stability stem amply from its polymeric organic matrix and secondly from the connections established between interdifferent and intradifferent scale components through cross-links. Several studies have shown that the cross-links inhibition results in a reduction in strength of bone but they do not quantify the degree to which these connections contribute to the bone rigidity and toughness. This report is classified among the few works that measure the cross-links multiscale impact on the ultrastructure bone mechanical behavior. This work aims firstly to study the effect of cross-links at the molecule scale and secondly to gather from literature studies results handling with cross-links effects on the other bone ultrastructure scales in order to reveal the multiscale effect of cross-links. This study proves that cross-links increasing number improves the mechanical performance of each scale of bone ultrastructure. On the other hand, cross-links have a multiscale contribution that depends on its rank related to existing cross-links connecting the same geometries and it depends on mechanical characteristics of geometries connected.


2014 ◽  
Vol 50 (33) ◽  
pp. 4351 ◽  
Author(s):  
Gyu Ha Hwang ◽  
Kyung Hyun Min ◽  
Hong Jae Lee ◽  
Hye Young Nam ◽  
Gi Hyun Choi ◽  
...  

2004 ◽  
Vol 841 ◽  
Author(s):  
Jessica D. Kaufman ◽  
Catherine M. Klapperich

ABSTRACTImplants, tissue engineering scaffold materials, drug delivery and bio-micro electromechanical systems (BioMEMs) all use polymer or hydrogel materials. These applications require both mechanical performance and successful integration of the material into a biological environment. Mechanical strength, storage and loss moduli, wear resistance and surface adhesion properties are all critical in biomedical device design and can be determined using nanoindentation. The difficulty of obtaining large samples of specialized materials, and the complexity of testing soft materials in traditional materials testing apparatus, make nanoindentation an attractive alternative. Our previous research using nanoindentation to measure the surface mechanical properties of non-hydrated polymers led to improvement in nanoindentation testing protocols. One of the major challenges in using this technique for hydrogels and tissues is maintaining and controlling hydration of the materials during the test. Here we describe the design of a microfluidic platform for nanoindentation that facilitates continuous hydration of hydrogel samples and high throughput nanomechanical testing. Data from creep experiments on synthetic, hydrated poly-2-hydroxyethyl methacrylate (poly-HEMA) are presented. In addition, we show data to validate the materials properties determined from nanomechanical testing by complementary testing. Finally, the data is fitted to a phenomenological model for viscoelastic materials, specifically the three-element standard linear solid model used by Cheng et al. [1].


Sign in / Sign up

Export Citation Format

Share Document