Controllable transformation of CoNi-MOF-74 on Ni foam into hierarchical-porous Co(OH)2/Ni(OH)2 micro-rods with ultra-high specific surface area for energy storage

2021 ◽  
pp. 132123
Author(s):  
Jiao-Jiao Zhou ◽  
Wuxing Ji ◽  
Le Xu ◽  
Yang Yang ◽  
Wanqing Wang ◽  
...  
Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2019 ◽  
Vol 12 (6) ◽  
pp. 1979-1988 ◽  
Author(s):  
Xiao Xu ◽  
Hongjun Zhang ◽  
Junxuan Ao ◽  
Lu Xu ◽  
Xiyan Liu ◽  
...  

The development of high specific surface area amidoxime-based polymeric (H-ABP) fibers presents a new technology for the synthesis of highly efficient adsorbents for uranium extraction from seawater (UES), thus opening a whole new means of nuclear fuel production from the ocean.


2019 ◽  
Vol 7 (16) ◽  
pp. 9656-9664 ◽  
Author(s):  
Nadeem Hussain ◽  
Wenjuan Yang ◽  
Jianmin Dou ◽  
Yanan Chen ◽  
Yitai Qian ◽  
...  

Two-dimensional (2D) nanomaterials with a high specific surface area and mesoporous nature are attractive and have wide applications in catalysis, energy storage systems, etc.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 7833-7841 ◽  
Author(s):  
Lukai Wang ◽  
Junzong Feng ◽  
Yonggang Jiang ◽  
Liangjun Li ◽  
Jian Feng

The traditional SiO2 aerogels are difficult to apply in the fields of energy storage and heat insulation due to their poor mechanical properties.


2019 ◽  
Vol 7 (15) ◽  
pp. 9163-9172 ◽  
Author(s):  
Lifeng Zhang ◽  
Yu Guo ◽  
Kechao Shen ◽  
Jinghao Huo ◽  
Yi Liu ◽  
...  

Polypyrrole (PPy)-derived porous carbons with an ion-matching micropore diameter exhibit ultra-high specific surface area and capacitance when used in supercapacitors.


2018 ◽  
Vol 6 (35) ◽  
pp. 17057-17066 ◽  
Author(s):  
Ruiying Shi ◽  
Cuiping Han ◽  
Hongfei Li ◽  
Lei Xu ◽  
Tengfei Zhang ◽  
...  

This work demonstrates egg-white derived activated carbon with exceptionally high specific surface area and improved graphitization degree using NaCl template.


RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50063-50069 ◽  
Author(s):  
Li-Ping Lv ◽  
Zhong-Shuai Wu ◽  
Long Chen ◽  
Hao Lu ◽  
Yi-Ran Zheng ◽  
...  

We describe the synthesis of hierarchical porous nitrogen-doped carbon nanoparticles with high specific surface area and specific capacitance for supercapacitors.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Fuming Zhang ◽  
Xiangshang Xiao ◽  
Dayakar Gandla ◽  
Zhaoxi Liu ◽  
Daniel Q. Tan ◽  
...  

We report here on a hollow-fiber hierarchical porous carbon exhibiting an ultra-high specific surface area, synthesized by a facile method of carbonization and activation, using the Metaplexis Japonica (MJ) shell. The Metaplexis Japonica-based activated carbon demonstrated a very high specific surface area of 3635 m2 g−1. Correspondingly, the derived carbonaceous material delivers an ultra-high capacitance and superb cycle life in an alkaline electrolyte. The pore-ion size compatibility is optimized using tailored hierarchical porous carbon and different ion sized organic electrolytes. In ionic liquids nonaqueous based electrolytes we tailored the MJ carbon pore structure to the electrolyte ion size. The corresponding supercapacitor shows a superior rate performance and low impedance, and the device records specific energy and specific power densities as high as 76 Wh kg−1 and 6521 W kg−1, as well as a pronounced cycling durability in the ionic liquid electrolytes. Overall, we suggest a protocol for promising carbonaceous electrode materials enabling superior supercapacitors performance.


Sign in / Sign up

Export Citation Format

Share Document