scholarly journals Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19

Cell ◽  
2021 ◽  
Author(s):  
Carly G.K. Ziegler ◽  
Vincent N. Miao ◽  
Anna H. Owings ◽  
Andrew W. Navia ◽  
Ying Tang ◽  
...  
Keyword(s):  
2021 ◽  
Vol 22 (4) ◽  
pp. 485-496
Author(s):  
Mariko Takahashi ◽  
Chan-Wang J. Lio ◽  
Anaamika Campeau ◽  
Martin Steger ◽  
Ferhat Ay ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (8) ◽  
pp. 1564-1571 ◽  
Author(s):  
Mark K. Lafferty ◽  
Lingling Sun ◽  
Leon DeMasi ◽  
Wuyuan Lu ◽  
Alfredo Garzino-Demo

AbstractWe have identified a postentry CCR6-dependent mechanism of inhibition of HIV occurring at an early stage of infection mediated by the induction of the host restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G). We observed induction of APOBEC3G expression only in CCR6+ cells but not in cells treated with the G inhibitory (Gi) pathway inhibitor pertussis toxin. CCR6 is highly expressed on peripheral blood CD4+CCR5+ memory T cells and by 2 populations of CD4+ T cells within the gut, α4β7+ and T helper type 17, that have been implicated in cell-to-cell spread of HIV and enhanced restoration of CD4+ T cells within gut-associated lymphoid tissue, respectively. This novel CCR6-mediated mechanism of inhibition allows the identification of pathways that induce intrinsic immunity to HIV, which could be useful in devising novel therapeutics that selectively target CCR6+ cells.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2197
Author(s):  
Célia Chamontin ◽  
Guillaume Bossis ◽  
Sébastien Nisole ◽  
Nathalie J. Arhel ◽  
Ghizlane Maarifi

Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 922 ◽  
Author(s):  
Louis Bergantz ◽  
Frédéric Subra ◽  
Eric Deprez ◽  
Olivier Delelis ◽  
Clémence Richetta

Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.


2014 ◽  
pp. 1-11
Author(s):  
Hila Elinav ◽  
Richard E. Sutton
Keyword(s):  

Retrovirology ◽  
2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Greta Forlani ◽  
Mariam Shallak ◽  
Elise Ramia ◽  
Alessandra Tedeschi ◽  
Roberto S. Accolla

Abstract Background Immunity against pathogens evolved through complex mechanisms that only for sake of simplicity are defined as innate immunity and adaptive immunity. Indeed innate and adaptive immunity are strongly intertwined each other during evolution. The complexity is further increased by intrinsic mechanisms of immunity that rely on the action of intracellular molecules defined as restriction factors (RFs) that, particularly in virus infections, counteract the action of pathogen gene products acting at different steps of virus life cycle. Main body and conclusion Here we provide an overview on the nature and the mode of action of restriction factors involved in retrovirus infection, particularly Human T Leukemia/Lymphoma Virus 1 (HTLV-1) infection. As it has been extensively studied by our group, special emphasis is given to the involvement of the MHC class II transactivator CIITA discovered in our laboratory as regulator of adaptive immunity and subsequently as restriction factor against HIV-1 and HTLV-1, a unique example of dual function linking adaptive and intrinsic immunity during evolution. We describe the multiple molecular mechanisms through which CIITA exerts its restriction on retroviruses. Of relevance, we review the unprecedented findings pointing to a concerted action of several restriction factors such as CIITA, TRIM22 and TRIM19/PML in synergizing against retroviral replication. Finally, as CIITA profoundly affects HTLV-1 replication by interacting and inhibiting the function of HTLV-1 Tax-1 molecule, the major viral product associated to the virus oncogenicity, we also put forward the hypothesis of CIITA as counteractor of HTLV-1-mediated cancer initiation.


2016 ◽  
Vol 90 (17) ◽  
pp. 8013-8028 ◽  
Author(s):  
Alexander S. Hahn ◽  
Anna K. Großkopf ◽  
Doris Jungnickl ◽  
Brigitte Scholz ◽  
Armin Ensser

ABSTRACTNuclear domain 10 (ND10) components restrict herpesviral infection, and herpesviruses antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. The rhesus monkey rhadinovirus (RRV) shares many key biological features with the closely related Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) and readily infects cells of both human and rhesus monkey origin. We used the clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) technique to generate knockout (ko) cells for each of the four ND10 components, PML, SP100, DAXX, and ATRX. These ko cells were analyzed with regard to permissiveness for RRV infection. In addition, we analyzed the fate of the individual ND10 components in infected cells by immunofluorescence and Western blotting. Knockout of the ND10 component DAXX markedly increased RRV infection, while knockout of PML or SP100 had a less pronounced effect. In line with these observations, RRV infection resulted in rapid degradation of SP100, followed by degradation of PML and the loss of ND10 structures, whereas the protein levels of ATRX and DAXX remained constant. Notably, inhibition of the proteasome but not inhibition ofde novogene expression prevented the loss of SP100 and PML in cells that did not support lytic replication, compatible with proteasomal degradation of these ND10 components through the action of a viral tegument protein. Expression of the RRV FGARAT homolog ORF75 was sufficient to effect the loss of SP100 and PML in transfected or transduced cells, implicating ORF75 as the viral effector protein.IMPORTANCEOur findings highlight the antiviral role of ND10 and its individual components and further establish the viral FGARAT homologs of the gammaherpesviruses to be important viral effectors that counteract ND10-instituted intrinsic immunity. Surprisingly, even closely related viruses like KSHV and RRV evolved to use different strategies to evade ND10-mediated restriction. RRV first targets SP100 for degradation and then targets PML with a delayed kinetic, a strategy which clearly differs from that of other gammaherpesviruses. Despite efficient degradation of these two major ND10 components, RRV is still restricted by DAXX, another abundant ND10 component, as evidenced by a marked increase in RRV infection and replication upon knockout of DAXX. Taken together, our findings substantiate PML, SP100, and DAXX as key antiviral proteins, in that the first two are targeted for degradation by RRV and the last one still potently restricts replication of RRV.


Sign in / Sign up

Export Citation Format

Share Document