Numerical study of gas–solid flow behavior in a two-stage high-density riser using EMMS-based drag model

Author(s):  
Yawen Zhang ◽  
Qiao Ma ◽  
Xiang Xu ◽  
Yunhan Xiao ◽  
Fulin Lei
2020 ◽  
Vol 374 ◽  
pp. 304-313
Author(s):  
Xueer Pan ◽  
Wenhao Lian ◽  
Jingxuan Yang ◽  
Zhonglin Zhang ◽  
Xiaogang Hao ◽  
...  

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
M. T. Schobeiri ◽  
S. Abdelfattah

Improved computational fluid dynamics tools based on Reynolds-averaged Navier–Stokes (RANS) equations have shown that the behavior of simple flow cases can be predicted with a reasonable degree of accuracy. Their predictive capability, however, substantially diminishes whenever major secondary vortices, adverse pressure gradients, and wake-boundary layer interactions are present. Flow through high-pressure (HP) turbine components uniquely incorporates almost all of the above features, interacting with each other and determining the efficiency and performance of the turbine. Thus, the degree of accuracy of predicting the flow through a HP turbine can be viewed as an appropriate benchmark test for evaluating the predictive capability of any RANS-based method. Detailed numerical and experimental investigations of different HP turbines presented in this paper have revealed substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. This paper aims at identifying the quantities whose simulation inaccuracies are pre-eminently responsible for the aforementioned differences. This task requires (a) a meticulous experimental investigation of all individual thermofluid quantities and their interactions resulting in an integral behavior of the turbomachine in terms of efficiency and performance, (b) a detailed numerical investigation using appropriate grid densities based on simulation sensitivity, and (c) steady and transient simulations to ensure their impact on the final numerical results. To perform the above experimental and numerical tasks, two different HP turbines were investigated: (1) a two-stage turbine with moderately compound-leaned stator blades and (2) a three-stage turbine rotor with compound-leaned stator and rotor blades. Both turbines have been thoroughly measured and numerically simulated using RANS and URANS. Detailed interstage radial and circumferential traversing presents a complete flow picture of the second stage. Performance measurements were carried out for design and off-design rotational speeds. For comparison with numerical simulations, the turbines were numerically modeled using a commercially available code. An extensive mesh sensitivity study was performed to achieve a grid-independent accuracy for both steady and transient analysis. Comparison of RANS/URANS results with the experimental ones revealed differences in total pressure for the two-stage turbine of up to 5%. A significantly lower difference of less than 0.2% is observed for the three-stage turbine with specially designed blades to suppress the secondary flow losses. Analyzing the physical background of a RANS-based solver, it was argued that the differences of individual quantities exhibited in the paper were attributed to the deficiencies in dissipation and transition models.


2012 ◽  
Vol 614-615 ◽  
pp. 596-599
Author(s):  
Qing Wang ◽  
Jian Bo Xiao ◽  
Hong Peng Liu

Gas-solid flow behavior of the bottom zone of a 65t/h High-low bed CFB was simulated using the commercial computational fluid dynamics (CFD) software package Fluent. The Eulerian-Eulerian model (EEM) based on the kinetic theory of granular flow (KTGF) was adopted. This approach treated each phase as continuous separately. The link between the gas and solid phases was through drag model and turbulence model. While the turbulence was simulated by the standard k-ε and mixture multiphase model, the Gidaspow drag model was used to model the interphase interaction. Four phases were set to achieve size distribution in the EEM. Gas and solid flow profiles are obtained for solid velocity, solid volume fraction, pressure, and size distribution. The results show that EEM can predict preferably the internal circulation process of the dense zone high-low bed CFB.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 70
Author(s):  
Xudong An ◽  
Lin Jiang ◽  
Fatemeh Hassanipour

In many industrial applications, a permeable mesh (porous screen) is used to control the unsteady (most commonly vortex) flows. Vortex flows are known to display intriguing behavior while propagating through porous screens. This numerical study aims to investigate the effects of physical properties such as porosity, Reynolds number, inlet flow dimension, and distance to the screen on the flow behavior. The simulation model includes a piston-cylinder vortex ring generator and a permeable mesh constructed by evenly arranged rods. Two methods of user-defined function and moving mesh have been applied to model the vortex ring generation. The results show the formation, evolution, and characteristics of the vortical rings under various conditions. The results for vorticity contours and the kinetic energy dissipation indicate that the physical properties alter the flow behavior in various ways while propagating through the porous screens. The numerical model, cross-validated with the experimental results, provides a better understanding of the fluid–solid interactions of vortex flows and porous screens.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 52
Author(s):  
José Niño-Mora

We consider the multi-armed bandit problem with penalties for switching that include setup delays and costs, extending the former results of the author for the special case with no switching delays. A priority index for projects with setup delays that characterizes, in part, optimal policies was introduced by Asawa and Teneketzis in 1996, yet without giving a means of computing it. We present a fast two-stage index computing method, which computes the continuation index (which applies when the project has been set up) in a first stage and certain extra quantities with cubic (arithmetic-operation) complexity in the number of project states and then computes the switching index (which applies when the project is not set up), in a second stage, with quadratic complexity. The approach is based on new methodological advances on restless bandit indexation, which are introduced and deployed herein, being motivated by the limitations of previous results, exploiting the fact that the aforementioned index is the Whittle index of the project in its restless reformulation. A numerical study demonstrates substantial runtime speed-ups of the new two-stage index algorithm versus a general one-stage Whittle index algorithm. The study further gives evidence that, in a multi-project setting, the index policy is consistently nearly optimal.


2005 ◽  
Author(s):  
Quanhong Shen ◽  
Peijun Jiang ◽  
Guosheng Qi ◽  
Duanyi Xu ◽  
Jie Song

Author(s):  
Mosbah Ben Said ◽  
Ahmed Ouamane

Abstract Labyrinth weirs are commonly used to increase the capacity of existing spillways and provide more efficient spillways for new dams due to their high specific discharge capacity compared to the linear weir. In the present study, experimental and numerical investigation was conducted to improve the rectangular labyrinth weir performance. In this context, four configurations were tested to evaluate the influence of the entrance shape and alveoli width on its discharge capacity. The experimental models, three models of rectangular labyrinth weir with rounded entrance and one with flat entrance, were tested in rectangular channel conditions for inlet width to outlet width ratios (a/b) equal to 0.67, 1 and 1.5. The results indicate that the rounded entrance increases the weir efficiency by up to 5%. A ratio a/b equal to 1.5 leads to an 8 and 18% increase in the discharge capacity compared to a/b ratio equal to 1 and 0.67, respectively. In addition, a numerical simulation was conducted using the opensource CFD OpenFOAM to analyze and provide more information about the flow behavior over the tested models. A comparison between the experimental and numerical discharge coefficient was performed and good agreement was found (Mean Absolute Relative Error of 4–6%).


Sign in / Sign up

Export Citation Format

Share Document