Pressure recovery and acceleration length of gas-solid suspension in an abrupt expansion – An Eulerian-Eulerian approach

2020 ◽  
Vol 226 ◽  
pp. 115820
Author(s):  
Santosh Kumar Senapati ◽  
Sukanta Kumar Dash
2017 ◽  
pp. 48-50
Author(s):  
E. F. Gilfanov

Operation time of the well before stopping for investigating the pressure recovery curve in hydrodynamic studies is an important parameter affecting the quality and accuracy of results of research processing. Comparing the actual and theoretical pressure curves and the derivative, it’s possible to eliminate the uncertainty in the choice of previous history of the well operation.


2018 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Latif Ngudi Wibawanto ◽  
Budi Santoso ◽  
Wibawa Endra Juwana

This research was conducted to find out the flow characteristic of two phases through the channel with sudden expansion in the form of change of flow pattern and pressure recovery. The test was carried out with variation of superficial velocity of water 0.2-1.3 m / s and superficial air velocity of 0.2-1.9 m / s resulting in pattern of three flow patterns ie bubble, plug, and slug. The expansion channel resulted in some changes to the flow pattern that originally plugs in the upstream channel into bubble in the downstream channel and the slug becomes plug. Pressure recovery experimental results compared with the homogeneous model flow equation and Wadle correlation, both correlations have predictions with standard deviation values of 0.32 and 0.43.


Circulation ◽  
1995 ◽  
Vol 92 (12) ◽  
pp. 3464-3472 ◽  
Author(s):  
Pieter M. Vandervoort ◽  
Neil L. Greenberg ◽  
Min Pu ◽  
Kimerly A. Powell ◽  
Delos M. Cosgrove ◽  
...  

1999 ◽  
Vol 33 (6) ◽  
pp. 1655-1661 ◽  
Author(s):  
Helmut Baumgartner ◽  
Thomas Stefenelli ◽  
Julia Niederberger ◽  
Heinrich Schima ◽  
Gerald Maurer

Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
Bharat Bhushan Arora

Abstract An annular diffuser is a critical component of the turbomachinery, and its prime function is to reduce the flow velocity. The current work is carried to study the effect of four different geometrical designs of an annular diffuser using the ANSYS Fluent. The numerical simulations were carried out to examine the effect of fully developed turbulent swirling and non-swirling flow. The flow behavior of the annular diffuser is analyzed at Reynolds number 2.5 × 105. The simulated results reveal pressure recovery improvement at the casing wall with adequate swirl intensity at the diffuser inlet. Swirl intensity suppresses the flow separation on the casing and moves the flow from the hub wall to the casing wall of the annulus region. The results also show that the Equal Hub and Diverging Casing (EHDC) annular diffuser in comparison to other diffusers has a higher static pressure recovery (C p  = 0.76) and a lower total pressure loss coefficient of (C L  = 0.12) at a 17° swirl angle.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Luana Almeida Gonzaga ◽  
Luiz Carlos Marques Vanderlei ◽  
Rayana Loch Gomes ◽  
Vitor Engrácia Valenti

Sign in / Sign up

Export Citation Format

Share Document