One-step start-up and subsequent operation of CANON process in a fixed-bed reactor by inoculating mixture of partial nitrification and Anammox sludge

Chemosphere ◽  
2021 ◽  
pp. 130075
Author(s):  
Xian Wang ◽  
Tao Wang ◽  
Luzi Yuan ◽  
Fanghua Xing
2015 ◽  
Vol 35 (2) ◽  
pp. 331-339 ◽  
Author(s):  
RONALDO FIA ◽  
ERLON L. PEREIRA ◽  
FÁTIMA R. L. FIA ◽  
DÉBORA G. EMBOABA ◽  
EMANUEL M. GOMES

This study aimed to evaluate the start-up of a horizontal anaerobic fixed bed reactor (HAFBR) followed by an upflow anaerobic sludge blanket (UASB) for the slaughterhouse wastewater treatment. HAFBR was filled with bamboo rings and had 1.2 m in length, 0.10 m in diameter and volume of 7.5 L. The UASB had the volume of 15 L. The HAFBR and UASB operated at organic loading rate and hydraulic retention time average of 8.46 and 3.77 kg m-3 d-1 of COD and 0.53 and 0.98 days, respectively. During 150 days of monitoring system it was found pH 6.8, relatively high values of bicarbonate alkalinity (> 1000 mg L-1) and reduced values of volatile acids (70 to 150 mg L-1), which afforded average removal efficiencies of COD total and total suspended solids of the order of 31 and 23% in HAFBR and 79% and 63% in UASB. It can be concluded that the generation and consumption of bicarbonate alkalinity and total volatile acids, thereby maintaining the pH during the study indicated stable operation of the reactors. The COD removal in the reactors was satisfactory especially when it considers that the assessment was conducted in a period of adaptation of organisms to the effluent and also the high organic load applied during this period.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 622 ◽  
Author(s):  
Zahraa Al-Auda ◽  
Hayder Al-Atabi ◽  
Keith Hohn

Methyl ethyl ketone (MEK) was converted to heavier ketones in one step, using a multi-functional catalyst having both aldol condensation (aldolization and dehydration) and hydrogenation properties. 15% Cu supported zirconia (ZrO2) was investigated in the catalytic gas phase reaction of MEK in a fixed bed reactor. The results showed that the main product was 5-methyl-3-heptanone (C8 ketone), with side products including 5-methyl-3-heptanol, 2-butanol, and other heavy products (C12 and up). The effects of various reaction parameters, like temperature and molar ratio of reactants (H2/MEK), on the overall product selectivity were studied. It was found that with increasing the temperature of the reaction, the selectivity to the C8 ketone increased, while selectivity to the 2-butanol decreased. Also, hydrogen pressure played a significant role in the selectivity of the products. It was observed that with increasing the H2/MEK molar ratio, the 2-butanol selectivity increased because of the hydrogenation reaction, while decreasing this ratio led to increasing the aldol condensation products. In addition, it was noted that both the conversion and selectivity to the main product increased using a low loading percentage of copper, 1% Cu–ZrO2. The highest selectivity of 5-methyl-3-heptanone reached ~64%, and was obtained at a temperature of around 180 °C and a molar ratio of H2/MEK equal to 2. Other metals (Ni, Pd, and Pt) that were supported on ZrO2 also produced 5-methyl-3-heptanone as the main product, with slight differences in selectivity, suggesting that a hydrogenation catalyst is important for producing the C8 ketone, but that the exact identity of the metal is less important.


2014 ◽  
Vol 70 (2) ◽  
pp. 1228-1237 ◽  
Author(s):  
Flavio Manenti ◽  
Andres R. Leon-Garzon ◽  
Zohreh Ravaghi-Ardebili ◽  
Carlo Pirola

2016 ◽  
Vol 73 (9) ◽  
pp. 2294-2300 ◽  
Author(s):  
A. Robles ◽  
E. Latrille ◽  
J. Ribes ◽  
N. Bernet ◽  
J. P. Steyer

The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors.


2005 ◽  
Vol 48 (5) ◽  
pp. 841-849 ◽  
Author(s):  
Cláudio Antonio Andrade Lima ◽  
Rogers Ribeiro ◽  
Eugenio Foresti ◽  
Marcelo Zaiat

This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the process of attachment to the polyurethane foam surface. From the 10th week of operation onwards, an increase was observed in the morphological diversity, mainly due to rods, cocci, and Methanosaeta-like archaeal cells. Hydrodynamic problems, such as bed clogging and channeling occurred in the fixed-bed reactor, mainly due to the production of extracellular polymeric substances and their accumulation in the interstices of the bed causing a gradual deterioration of its performance, which eventually led to the system's collapse. These results demonstrated the importance and usefulness of monitoring the dynamics of the formation of biofilm during the start-up period of HAIB reactors, since it allowed the identification of operational problems.


AIChE Journal ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Jens Bremer ◽  
Karsten H. G. Rätze ◽  
Kai Sundmacher

2016 ◽  
Vol 73 (8) ◽  
pp. 1848-1854 ◽  
Author(s):  
Tao Wang ◽  
Boxiong Shen ◽  
Sha Zhang ◽  
Zhiqiang Wang ◽  
Li Tian

Novel honeycomb-like carriers, made of polypropylene, were applied to enhance biomass retention capacity so as to improve Anammox start-up performance in a fixed bed reactor (FBR). The reactor was operated for 3 months. On day 45, Anammox activity appeared. After 61 days' operation, the removal efficiencies of ammonium and nitrite were both over 91% based on 70 mg N L−1 of the influent ammonium and influent nitrite, indicating that a remarkable Anammox activity was attained. A final specific Anammox activity of 0.12 g NH4+-N gVSS−1 d−1 was reached (VSS: volatile suspended solids). The FBR showed a good capacity for resisting shock loading and was more able to resist shock loading of nitrogen concentration than resist hydraulic shock loading. Phylogenetic analysis showed that Candidatus Brocadia anammoxidans' and Candidatus Kuenenia stuttgartiensis' were detected in the mature biofilm, and Candidatus Brocadia anammoxidans' was the dominant Anammox strain. Candidatus Kuenenia stuttgartiensis' played a positive role in the reactor performance, as it could consumed nitrite quickly and efficiently so as to avoid an adverse effect of temporary nitrite accumulation. The results showed that the honeycomb-like carriers were suitable for start-up of Anammox.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1056
Author(s):  
Suntorn Sangsong ◽  
Tanakorn Ratana ◽  
Sabaithip Tungkamani ◽  
Thana Sornchamni ◽  
Monrudee Phongaksorn ◽  
...  

A novel dual Ni-based catalytic process (DCP) to control the H2/CO ratio of 2 in the syngas product within one step at temperature <700 °C was created and constructed. With the sequence of the catalysts located in the single reactor, the endothermic combined steam and CO2 reforming of methane (CSCRM) reaction and the exothermic ultra-high-temperature water–gas shift (UHT-WGS) reaction work continuously. During the process, the H2/CO ratio is raised suddenly at UHT-WGS after the syngas is produced from CSCRM, and CSCRM utilizes the heat released from UHT-WGS. Due to these features, DCP is more compact, enhances energy efficiency, and thus decreases the capital cost compared to reformers connecting with shift reactors. To prove this propose, the DCP tests were done in a fixed-bed reactor under various conditions (temperature = 500, 550, and 600 °C; the feed mixture (CH4, CO2, H2O, and N2) with H2O/(CH4 + CO2) ratio = 0.33, 0.53, and 0.67). According to the highest CH4 conversion (around 65%) with carbon tolerance, the recommended conditions for producing syngas with the H2/CO ratio of 2 as a feedstock of Fischer–Tropsch synthesis include the temperature of 600 °C and the H2O/(CH4 + CO2) ratio of 0.53.


Author(s):  
H Armbruster ◽  
S Stucki ◽  
E Olsson ◽  
S Gjirja

Fumigation of dimethyl ether (DME) is an interesting option for using methanol as a fuel in compression ignition engines. In this concept, a fraction of the methanol used as a fuel is catalytically converted on-board to DME and water, and the products of the conversion are introduced into the engine via the combustion air. With an optimized engine the performance as well as emissions are comparable with those obtained when running the engine on alcohol with polyethylene glycol as ignition improver. The methanol conversion has been tested with different catalysts under various conditions. Because of its superior thermal stability and the low costs, γ-Al2O3 has been selected as the most promising catalyst for converting methanol to DME in suffcient rates for an on-board application. The chemical kinetics and the mass transfer limitations of the γ-Al2O3 catalyst used for the methanol dehydration were evaluated. The rate-determining step of the catalytic reaction is found to be the reaction of adsorbed intermediates (the Langmuir-Hinshelwood mechanism); mass transfer is limited by Knudsen diffusivity. The kinetic data were used to design a catalytic converter for fuel processing on-board. Providing DME for fumigation in a 180 kW engine will require approximately 0.7 kg of catalyst. The compact catalyst is necessary for an effcient and fast start-up of the process. The transient behaviour (cold/warm start-up; load changes) of a fixed-bed reactor with γ-Al2O3 has been estimated using simplified models, which show that the cold start problem should be manageable in less than 1 min. With the hot gas of a methanol burner in front of the fixed bed or a bifunctional catalyst, the catalyst bed can be heated to 250 °C and the reaction of methanol to DME started within 25 s. This is an acceptable time for cold-starting an engine in heavy-duty vehicles.


Sign in / Sign up

Export Citation Format

Share Document