Process intensification of thumba methyl ester (Biodiesel) production using hydrodynamic cavitation

Author(s):  
Abhijeet Dilip Patil ◽  
Saroj Sundar Baral
2016 ◽  
Vol 33 ◽  
pp. 220-225 ◽  
Author(s):  
Daniele Crudo ◽  
Valentina Bosco ◽  
Giuliano Cavaglià ◽  
Giorgio Grillo ◽  
Stefano Mantegna ◽  
...  

2020 ◽  
Vol 24 (1) ◽  
pp. 72-87 ◽  
Author(s):  
Sara Tayari ◽  
Reza Abedi ◽  
Ali Abedi

AbstractMicroalgae have been mentioned as a promising feedstock for biodiesel production. In this study, microalgae Chlorella vulgaris (MCV) was cultivated in a bioreactor with wastewater. After biodiesel production from MCV oil via transesterification reaction, chemical and physical properties of MCV methyl ester were evaluated with regular diesel and ASTM standard. Besides, engine performance and exhaust emissions of CI engine fuelled with the blends of diesel-biodiesel were measured. The GC-MS analysis showed that oleic and linoleic acids were the main fatty acid compounds in the MCV methyl ester. Engine test results revealed that the use of biodiesel had led to a major decrease in CO and HC emissions and a modest reduction in CO2 emissions, whereas there was a minor increase in NOx emissions. Furthermore, there was a slight decrease in the engine power and torque while a modest increase in brake specific fuel consumption which are acceptable due to exhaust emissions reduction. The experimental results illustrate considerable capabilities of applied MVC biodiesel as an alternative fuel in diesel engines to diminish the emissions.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119117 ◽  
Author(s):  
Shashi Kant Bhatia ◽  
Ravi Kant Bhatia ◽  
Jong-Min Jeon ◽  
Arivalagan Pugazhendhi ◽  
Mukesh Kumar Awasthi ◽  
...  

Bioengineered ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 408-415 ◽  
Author(s):  
Ferruh Asci ◽  
Busra Aydin ◽  
Gulderen Uysal Akkus ◽  
Arzu Unal ◽  
Sevim Feyza Erdogmus ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 597 ◽  
Author(s):  
Damanik ◽  
Ong ◽  
Mofijur ◽  
Tong ◽  
Silitonga ◽  
...  

Nowadays, increased interest among the scientific community to explore the Calophyllum inophyllum as alternative fuels for diesel engines is observed. This research is about using mixed Calophyllum inophyllum-palm oil biodiesel production and evaluation that biodiesel in a diesel engine. The Calophyllum inophyllum–palm oil methyl ester (CPME) is processed using the following procedure: (1) the crude Calophyllum inophyllum and palm oils are mixed at the same ratio of 50:50 volume %, (2) degumming, (3) acid-catalysed esterification, (4) purification, and (5) alkaline-catalysed transesterification. The results are indeed encouraging which satisfy the international standards, CPME shows the high heating value (37.9 MJ/kg) but lower kinematic viscosity (4.50 mm2/s) due to change the fatty acid methyl ester (FAME) composition compared to Calophyllum inophyllum methyl ester (CIME). The average results show that the blended fuels have higher Brake Specific Fuel Consumption (BSFC) and NOx emissions, lower Brake Thermal Efficiency (BTE), along with CO and HC emissions than diesel fuel over the entire range of speeds. Among the blends, CPME5 offered better performance compared to other fuels. It can be recommended that the CPME blend has great potential as an alternative fuel because of its excellent characteristics, better performance, and less harmful emission than CIME blends.


2014 ◽  
Vol 692 ◽  
pp. 133-138
Author(s):  
Athitan Timyamprasert ◽  
Vittaya Punsuvon ◽  
Kasem Chunkao ◽  
Juan L. Silva ◽  
Tae Jo Kim

The aim of this research was to develop a two-step technique to prepare biodiesel from waste palm oil (WPO) with high free fatty acid content. The developed process consists of esterification and transesterification steps. Response surface methodology (RSM) was applied for investigating the experimental design for esterification step. Design of experiment was performed by application of 5-levels-3-factors central composite design in order to study the optimum condition for decreasing FFA in WPO. The WPO with low FFA was further experimented in transesterification step to obtain fatty acid methyl ester (FAME). The investigated results showed that the WPO containing 48.62%wt of high FFA. The optimum condition of esterification step was 28 moles of methanol to FFA in WPO molar ratio, 5.5% sulfuric acid concentration in 90 min of reaction time and 60 °C of reaction temperature. After transesterification step, WPO biodiesel gave methyl ester content at 84.05% according to EN 14103 method. The properties of WPO methyl ester meet the standards of Thailand community biodiesel that can be used as fuel in agricultural machine.


Sign in / Sign up

Export Citation Format

Share Document