The occurrence, fate, and distribution of natural and synthetic hormones in different types of wastewater treatment plants in Iran

2018 ◽  
Vol 26 (5) ◽  
pp. 1132-1139 ◽  
Author(s):  
Mohammad Mehdi Amin ◽  
Bijan Bina ◽  
Afshin Ebrahimi ◽  
Zeynab Yavari ◽  
Farzaneh Mohammadi ◽  
...  
1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


2014 ◽  
Vol 69 (7) ◽  
pp. 1573-1580 ◽  
Author(s):  
L. Åmand ◽  
C. Laurell ◽  
K. Stark-Fujii ◽  
A. Thunberg ◽  
B. Carlsson

Three large wastewater treatment plants in Sweden participate in a project evaluating different types of ammonium feedback controllers in full-scale operation. The goal is to improve process monitoring, maintain effluent water quality and save energy. The paper presents the outcome of the long-term evaluation of controllers. Based on the experiences gained from the full-scale implementations, a discussion is provided about energy assessment for the purpose of comparing control strategies. The most important conclusions are the importance of long-term experiments and the difficulty of comparing energy consumption based on air flow rate measurements.


2002 ◽  
Vol 36 (16) ◽  
pp. 3965-3970 ◽  
Author(s):  
H Bauer ◽  
M Fuerhacker ◽  
F Zibuschka ◽  
H Schmid ◽  
H Puxbaum

2015 ◽  
Vol 73 (1) ◽  
pp. 182-191 ◽  
Author(s):  
Donwichai Sinthuchai ◽  
Suwanna Kitpati Boontanon ◽  
Narin Boontanon ◽  
Chongrak Polprasert

This study aimed to investigate the antibiotic concentration at each stage of treatment and to evaluate the removal efficiency of antibiotics in different types of secondary and advanced treatment, as well as the effects of the location of their discharge points on the occurrence of antibiotics in surface water. Eight target antibiotics and four hospital wastewater treatment plants in Bangkok with different conventional and advanced treatment options were investigated. Antibiotics were extracted by solid phase extraction and analysed by high performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). The antibiotic with the highest concentration at influent was cefazolin at 13,166 ng/L, while the antibiotic with the highest concentration at effluent was sulfamethoxazole at 1,499 ng/L. The removal efficiency of antibiotics from lowest to highest was sulfamethoxazole, piperacillin, clarithromycin, metronidazole, dicloxacillin, ciprofloxacin, cefazolin, and cefalexin. The adopted conventional treatment systems could not completely remove all antibiotics from wastewater. However, using advanced treatments or disinfection units such as chlorination and UV could increase the antibiotic removal efficiency. Chlorination was more effective than UV, ciprofloxacin and sulfamethoxazole concentration fluctuated during the treatment process, and sulfamethoxazole was the most difficult to remove. Both these antibiotics should be studied further regarding their contamination in sludge and suitable treatment options for their removal.


2011 ◽  
Vol 63 (1) ◽  
pp. 57-65 ◽  
Author(s):  
J. M. Choubert ◽  
S. Martin Ruel ◽  
M. Esperanza ◽  
H. Budzinski ◽  
C. Miège ◽  
...  

The next challenge of wastewater treatment is to reliably remove micro-pollutants at the microgram per litre range in order to meet the environmental quality standards set by new regulations like the Water Framework Directive. The present work assessed the efficiency of different types of primary, secondary and tertiary processes for the removal of more than 100 priority substances and other relevant emerging pollutants through on-site mass balances over 19 municipal wastewater treatment lines. Secondary biological processes proved to be in average 30% more efficient than primary settling processes. The activated sludge (AS) process led to a significant reduction of pollution loads (more than 50% removal for 70% of the substances detected). Biofilm processes led to equivalent removal efficiencies compared to AS, except for some pharmaceuticals. The membrane bioreactor (MBR) process allowed to upgrade removal efficiencies of some substances only partially degraded during conventional AS processes. Preliminary tertiary processes like tertiary settling and sand filtration could achieve significant removal for adsorbable substances. Advanced tertiary processes, like ozonation, activated carbon and reverse osmosis were all very efficient (close to 100%) to complete the removal of polar pesticides and pharmaceuticals; less polar substances being better retained by reverse osmosis.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 261-266 ◽  
Author(s):  
F. B. Frechen

Odour emissions caused by wastewater treatment plants can bring serious annoyance to the plant's staff and local residents. A measurement technique is required that corresponds to the human impression of smell. Thus, olfactometry was used to determine the odour strength. Many facts contribute to the formation and release of odorous emissions. Surveys as well as measurement programs indicate that the sludge part of a wastewater treatment plant is the most critical part. Different types of waste air treatment plants are in use in West Germany. Regarding the total amount of waste air to be deodorized, chemical scrubbers play the major role today. Looking at the numbers of plants, bio-filters are most common. Biological waste air treatment systems are of increasing importance in West Germany.


Sign in / Sign up

Export Citation Format

Share Document