Homeostatic regulation of food intake

Author(s):  
Lizeth Cifuentes ◽  
Andres Acosta
2003 ◽  
Vol 90 (4) ◽  
pp. 729-734 ◽  
Author(s):  
Joanne A. Harrold ◽  
Gareth Williams

Knowledge of the cannabinoid system and its components has expanded greatly over the past decade. There is increasing evidence for its role in the regulation of food intake and appetite. Cannabinoid system activity in the hypothalamus is thought to contribute to the homeostatic regulation of energy balance, under the control of the hormone leptin. A second component of cannabinoid-mediated food intake appears to involve reward pathways and the hedonic aspect of eating. With the cannabinoid system contributing to both regulatory pathways, it presents an attractive therapeutic target for the treatment of both obesity and eating disorders.


2012 ◽  
Vol 302 (8) ◽  
pp. R917-R928 ◽  
Author(s):  
Christopher D. Morrison ◽  
Scott D. Reed ◽  
Tara M. Henagan

Free-living organisms must procure adequate nutrition by negotiating an environment in which both the quality and quantity of food vary markedly. Recent decades have seen marked progress in our understanding of neural regulation of feeding behavior. However, this progress has occurred largely in the context of energy intake, despite the fact that food intake is influenced by more than just the energy content of the diet. A large number of behavioral studies indicate that both the quantity and quality of dietary protein can markedly influence food intake. High-protein diets tend to reduce intake, low-protein diets tend to increase intake, and rodent models seem to self-select between diets in order to meet protein requirements and avoid diets that are imbalanced in amino acids. Recent work suggests that the amino acid leucine regulates food intake by altering mTOR and AMPK signaling in the hypothalamus, while activation of GCN2 within the anterior piriform cortex contributes to the detection and avoidance of amino acid-imbalanced diets. This review focuses on the role that these and other signaling systems may play in mediating the homeostatic regulation of protein balance, and in doing so, highlights our lack of knowledge regarding the physiological and neurobiological mechanisms that might underpin such a regulatory phenomenon.


2020 ◽  
Vol 134 (4) ◽  
pp. 389-401
Author(s):  
Carla El-Mallah ◽  
Omar Obeid

Abstract Obesity and increased body adiposity have been alarmingly increasing over the past decades and have been linked to a rise in food intake. Many dietary restrictive approaches aiming at reducing weight have resulted in contradictory results. Additionally, some policies to reduce sugar or fat intake were not able to decrease the surge of obesity. This suggests that food intake is controlled by a physiological mechanism and that any behavioural change only leads to a short-term success. Several hypotheses have been postulated, and many of them have been rejected due to some limitations and exceptions. The present review aims at presenting a new theory behind the regulation of energy intake, therefore providing an eye-opening field for energy balance and a potential strategy for obesity management.


2001 ◽  
Vol 120 (5) ◽  
pp. A209-A209
Author(s):  
M LUCA ◽  
E CERVELLIN ◽  
F GALEAZZI ◽  
D LANARO ◽  
L BUSETTO ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A208-A208
Author(s):  
L DEGEN ◽  
D MATZINGER ◽  
B FISCHER ◽  
F ZIMMERLI ◽  
M KNUPP ◽  
...  

Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


2010 ◽  
Vol 24 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Peter Walla ◽  
Maria Richter ◽  
Stella Färber ◽  
Ulrich Leodolter ◽  
Herbert Bauer

Two experiments investigate effects related to food intake in humans. In Experiment 1, we measured startle response modulation while study participants ate ice cream, yoghurt, and chocolate. Statistical analysis revealed that ice cream intake resulted in the most robust startle inhibition compared to no food. Contrasting females and males, we found significant differences related to the conditions yoghurt and chocolate. In females, chocolate elicited the lowest response amplitude followed by yoghurt and ice cream. In males, chocolate produced the highest startle response amplitude even higher than eating nothing, whereas ice cream produced the lowest. Assuming that high response amplitudes reflect aversive motivation while low response amplitudes reflect appetitive motivational states, it is interpreted that eating ice cream is associated with the most appetitive state given the alternatives of chocolate and yoghurt across gender. However, in females alone eating chocolate, and in males alone eating ice cream, led to the most appetitive state. Experiment 2 was conducted to describe food intake-related brain activity by means of source localization analysis applied to electroencephalography data (EEG). Ice cream, yoghurt, a soft drink, and water were compared. Brain activity in rostral portions of the superior frontal gyrus was found in all conditions. No localization differences between conditions occurred. While EEG was found to be insensitive, startle response modulation seems to be a reliable method to objectively quantify motivational states related to the intake of different foods.


2002 ◽  
Author(s):  
A. Jansen ◽  
N. Theunissen ◽  
K. Slechten ◽  
C. Nederkoorn ◽  
S. Mulkens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document