scholarly journals Inflammatory cytokines as a third signal for T cell activation

2010 ◽  
Vol 22 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Julie M Curtsinger ◽  
Matthew F Mescher
2021 ◽  
pp. annrheumdis-2020-219335
Author(s):  
Emma Garcia-Melchor ◽  
Giacomo Cafaro ◽  
Lucy MacDonald ◽  
Lindsay A N Crowe ◽  
Shatakshi Sood ◽  
...  

ObjectivesIncreasing evidence suggests that inflammatory mechanisms play a key role in chronic tendon disease. After observing T cell signatures in human tendinopathy, we explored the interaction between T cells and tendon stromal cells or tenocytes to define their functional contribution to tissue remodelling and inflammation amplification and hence disease perpetuation.MethodsT cells were quantified and characterised in healthy and tendinopathic tissues by flow cytometry (FACS), imaging mass cytometry (IMC) and single cell RNA-seq. Tenocyte activation induced by conditioned media from primary damaged tendon or interleukin-1β was evaluated by qPCR. The role of tenocytes in regulating T cell migration was interrogated in a standard transwell membrane system. T cell activation (cell surface markers by FACS and cytokine release by ELISA) and changes in gene expression in tenocytes (qPCR) were assessed in cocultures of T cells and explanted tenocytes.ResultsSignificant quantitative differences were observed in healthy compared with tendinopathic tissues. IMC showed T cells in close proximity to tenocytes, suggesting tenocyte–T cell interactions. On activation, tenocytes upregulated inflammatory cytokines, chemokines and adhesion molecules implicated in T cell recruitment and activation. Conditioned media from activated tenocytes induced T cell migration and coculture of tenocytes with T cells resulted in reciprocal activation of T cells. In turn, these activated T cells upregulated production of inflammatory mediators in tenocytes, while increasing the pathogenic collagen 3/collagen 1 ratio.ConclusionsInteraction between T cells and tenocytes induces the expression of inflammatory cytokines/chemokines in tenocytes, alters collagen composition favouring collagen 3 and self-amplifies T cell activation via an auto-regulatory feedback loop. Selectively targeting this adaptive/stromal interface may provide novel translational strategies in the management of human tendon disorders.


Blood ◽  
2015 ◽  
Vol 125 (20) ◽  
pp. 3183-3192 ◽  
Author(s):  
Dawn K. Reichenbach ◽  
Vincent Schwarze ◽  
Benjamin M. Matta ◽  
Victor Tkachev ◽  
Elisabeth Lieberknecht ◽  
...  

Key Points IL-33 and ST2 expression are increased post-conditioning and with GVHD, resulting in increased T-cell activation via the IL-33/ST2 axis. Infusion of ST2-Fc protein exploits sST2’s function as a negative regulator of acute GVHD inhibiting pro-inflammatory cytokines.


2020 ◽  
Author(s):  
Marcos Iglesias ◽  
Saami Khalifian ◽  
Byoung Chol Oh ◽  
Yichuan Zhang ◽  
Devin Miller ◽  
...  

AbstractCostimulation blockade-based regimens are a promising strategy for management of transplant recipients. However, maintenance immunosuppression via CTLA4-Ig monotherapy is characterized by high frequency of rejection episodes. Recent evidence suggests that inflammatory cytokines contribute to alloreactive T cell activation in a CD28-independent manner, a reasonable contributor to the limited efficacy of CTLA4-Ig. In this study, we investigated the possible synergism of a combined short-term inhibition of cytokine signaling and CD28 engagement on the modulation of rejection. Our results demonstrate that the JAK/STAT inhibitor Tofacitinib restored the immunomodulatory effect of CTLA4-Ig on mouse alloreactive T cells in presence of inflammatory cytokines. Tofacitinib exposure conferred dendritic cells with a tolerogenic phenotype reducing their cytokine secretion and costimulatory molecules expression. JAK inhibition also directly affected T cell activation. In vivo, the combination of CTLA4-Ig and Tofacitinib induced long-term survival of heart allografts and, importantly, it was equally effective when using grafts subjected to prolonged ischemia. Transplant survival correlated with a reduction in effector T cells and intragraft accumulation of regulatory T cells. Collectively, our studies demonstrate a powerful synergism between CTLA4-Ig and Tofacitinib and suggest their combined use is a promising strategy for improved management of transplanted patients.


2020 ◽  
Author(s):  
Barbara Bassani ◽  
Alessandro Gulino ◽  
Paola Portararo ◽  
Laura Botti ◽  
Barbara Cappetti ◽  
...  

AbstractAllogeneic bone marrow transplantation remains the only therapeutic option for a wide range of hematological malignancies despite the risk of possible adverse, immune-related events, such as infection and acute graft-versus-host disease (aGVHD). aGVHD is characterized by T-cell activation, defective B-cell development and osteoblastic niche destruction in bone marrow (BM) among other issues. Transplant conditioning regimens cause excessive inflammatory cytokines production and impaired regulatory T-cell control of aberrant T-cell activation. Here, we show that mesenchymal cells (MSCs) upregulated CD40 upon irradiation at the expense of mesenchymal markers, and that CD40 endows MSC of regulatory function on Treg homeostasis and fitness. Transplantation of wild type hematopoietic cells into a CD40-null recipient reduces Treg numbers allowing persistent T-cell activation and pro-inflammatory cytokines production causing, impaired B-lymphopoiesis. These evidences find correlation in aGVHD patients showing the loss of CD40+ BM-MSCs along with reduction in cells of the B-lineage. Modeling aGVHD in mice we show that the elimination of CD40+ BM-MSCs relies on their higher expression of MHC-I molecules. Indeed, aGVHD mice compared to MHC-matched controls showed the loss of MHC-I + radio-resistant host BM-MSCs. Our data point to CD40+ MHC-I+BM-MSCs as a key regulator of BM tolerogenic niches.Key pointsCD40 regulates BM immunological tolerance following total body irradiation (TBI) and transplantation (BMT).Loss of CD40+MHC-IhighBM-MSCs is associated to BM manifestation of aGVHD in human and murine model.


Sign in / Sign up

Export Citation Format

Share Document