High Ethanol Tolerance of Oil-in-water Pickering Emulsions Stabilized by Protein Nanoparticles

Author(s):  
Yajuan Sun ◽  
Yongqiang Shen ◽  
Jingjing Ding ◽  
Xinjiong Ni ◽  
Chen Li ◽  
...  
LWT ◽  
2021 ◽  
pp. 111999
Author(s):  
Zhongyang Ren ◽  
Zhongzheng Chen ◽  
Yuanyuan Zhang ◽  
Xiaorong Lin ◽  
Zhanming Li ◽  
...  

2021 ◽  
Vol 114 ◽  
pp. 106562
Author(s):  
Zhongyang Ren ◽  
Zhanming Li ◽  
Zhongzheng Chen ◽  
Yuanyuan Zhang ◽  
Xiaorong Lin ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1071 ◽  
Author(s):  
Yu-Jin Cho ◽  
Dong-Min Kim ◽  
In-Ho Song ◽  
Ju-Young Choi ◽  
Seung-Won Jin ◽  
...  

A pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based oligoimide (PMDA-ODA) was synthesized by a one-step procedure using water as a solvent. The PMDA-ODA particles showed excellent partial wetting properties and were stably dispersed in both water and oil phases. A stable dispersion was not obtained with comparison PMDA-ODA particles that were synthesized by a conventional two-step method using an organic solvent. Both oil-in-water and water-in-oil Pickering emulsions were prepared using the oligoimide particles synthesized in water, and the size of the emulsion droplet was controlled based on the oligoimide particle concentration. The oligoimide particles were tested to prepare Pickering emulsions using various kinds of oils. The oil-in-water Pickering emulsions were successfully applied to prepare microcapsules of the emulsion droplets. Our new Pickering emulsion stabilizer has the advantages of easy synthesis, no need for surface modification, and the capability of stabilizing both oil-in-water and water-in-oil emulsions.


2021 ◽  
Author(s):  
Arantzazu Santamaria-Echart ◽  
Isabel P. Fernandes ◽  
Samara C. Silva ◽  
Stephany C. Rezende ◽  
Giovana Colucci ◽  
...  

The food industry depends on using different additives, which increases the search for effective natural or natural-derived solutions, to the detriment of the synthetic counterparts, a priority in a biobased and circular economy scenario. In this context, different natural emulsifiers are being studied to create a new generation of emulsion-based products. Among them, phospholipids, saponins, proteins, polysaccharides, biosurfactants (e.g., compounds derived from microbial fermentation), and organic-based solid particles (Pickering stabilizers) are being used or start to gather interest from the food industry. This chapter includes the basic theoretical fundamentals of emulsions technology, stabilization mechanisms, and stability. The preparation of oil-in-water (O/W) and water-in-oil (W/O) emulsions, the potential of double emulsions, and the re-emerging Pickering emulsions are discussed. Moreover, the most relevant natural-derived emulsifier families (e.g., origin, stabilization mechanism, and applications) focusing food applications are presented. The document is grounded in a bibliographic review mainly centered on the last 10-years, and bibliometric data was rationalized and used to better establish the hot topics in the proposed thematic.


2017 ◽  
Vol 8 (8) ◽  
pp. 2974-2981 ◽  
Author(s):  
Xue-Feng Zhu ◽  
Jie Zheng ◽  
Fu Liu ◽  
Chao-Ying Qiu ◽  
Wei-Feng Lin ◽  
...  

Soy protein nanoparticles as Pickering stabilizers can be induced by heating in the presence of NaCl. The Pickering emulsions with NaCl exhibited much better freeze-thaw stability than those without NaCl.


Holzforschung ◽  
2018 ◽  
Vol 72 (6) ◽  
pp. 489-497 ◽  
Author(s):  
Jun Jiang ◽  
Jinzhen Cao ◽  
Wang Wang ◽  
Haiying Shen

AbstractPickering emulsions (emulsions stabilized by solid-state additives) are attractive as they have strong similarities with traditional surfactant-based emulsions. In this study, an oil-in-water (O/W) paraffin Pickering emulsion system with satisfying stability and small droplet size distribution was developed by hydrophilic silica particles and traditional surfactants as mixed emulsifiers. The droplet morphology and size distribution were observed by optical microscopy and a laser particle analyzer. The emulsion stability was improved and the droplet size was reduced after addition of a suitable amount of silica particles. The silica concentration of 1% showed the optimal effect among all the levels observed (0.1, 0.5, 1 and 2%). Wood was impregnated with the prepared emulsion, and the chemical and morphological properties of the product were investigated by Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersed X-ray analysis (SEM-EDXA). Moreover, the hydrophobicity, thermal properties, surface hardness, axial compression strength (CS) and dynamic mechanical properties were tested. The silica was evenly distributed in the wood cell wall and thus there was a synergistic positive effect from the paraffin and silica in the cell wall leading to better hydrophobicity, improved surface hardness and mechanical properties including the thermal stability.


2019 ◽  
Vol 96 ◽  
pp. 322-330 ◽  
Author(s):  
Zhongyang Ren ◽  
Zhongzheng Chen ◽  
Yuanyuan Zhang ◽  
Xiaorong Lin ◽  
Bin Li

Sign in / Sign up

Export Citation Format

Share Document