Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability

2019 ◽  
Vol 181 ◽  
pp. 910-917 ◽  
Author(s):  
Puxiu Wang ◽  
Xiuxiu Cao ◽  
Yang Chu ◽  
Puxiu Wang
Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 509
Author(s):  
Johanna Zech ◽  
Daniel Gold ◽  
Nadeen Salaymeh ◽  
Netanel Cohen Sasson ◽  
Ithai Rabinowitch ◽  
...  

Artemisone is an innovative artemisinin derivative with applications in the treatment of malaria, schistosomiasis and other diseases. However, its low aqueous solubility and tendency to degrade after solubilisation limits the translation of this drug into clinical practice. We developed a self-microemulsifying drug delivery system (SMEDDS), which is easy to produce (simple mixing) with a high drug load. In addition to known pharmaceutical excipients (Capmul MCM, Kolliphor HS15, propylene glycol), we identified Polysorb ID 46 as a beneficial new additional excipient. The physicochemical properties were characterized by dynamic light scattering, conductivity measurements, rheology and electron microscopy. High storage stability, even at 30 °C, was achieved. The orally administrated artemisone SMEDDS formulation was highly active in vivo in S. mansoni infected mice. Thorough elimination of the adult worms, their eggs and prevention of the deleterious granuloma formation in the livers of infected mice was observed even at a relatively low dose of the drug. The new formulation has a high potential to accelerate the clinical use of artemisone in schistosomiasis and malaria.


Biomaterials ◽  
2000 ◽  
Vol 21 (9) ◽  
pp. 945-955 ◽  
Author(s):  
U. Edlund ◽  
A.-C. Albertsson ◽  
S.K. Singh ◽  
I. Fogelberg ◽  
B.O. Lundgren

2013 ◽  
Vol 33 (2) ◽  
Author(s):  
Hongmei Xia ◽  
Chengyi Tang ◽  
Heng Gui ◽  
Xiaoming Wang ◽  
Jinliang Qi ◽  
...  

Shikonin has anticancer activity, but it has not yet been applied into clinical use. In the present study, shikonin was prepared using liposomes. We aimed to examine several aspects of sh-L (shikonin-containing liposomes): preparation, angiogenic suppression and cellular uptake through self-fluorescence. Sh-L were prepared using soybean phospholipid and cholesterol to form the membrane and shikonin was encapsulated into the phospholipid membrane. Three liposomes were prepared with shikonin. They had red fluorescence and were analysed using a flow cytometer. Angiogenic suppression of sh-L was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], Transwell tests, chick CAM (chorioallantoic membrane) and Matrigel™ plug assay. MTT assay showed the median IC50 (inhibitory concentrations) as follows: shikonin, sh-L1 and sh-L2 were 4.99±0.23, 5.81±0.57 and 7.17±0.69 μM, respectively. The inhibition rates of migration were 53.58±7.05, 46.56±4.36 and 41.19±3.59% for 3.15 μM shikonin, sh-L1 and sh-L2, respectively. The results of CAM and Matrigel plug assay demonstrated that shikonin and sh-L can decrease neovascularization. Effect of shikonin was more obvious than sh-L at the same concentration. The results showed that sh-L decreased the toxicity, the rate of inhibition of migration and angiogenic suppression. The cellular uptake of the sh-L could be pictured because of the self-fluorescence. The self-fluorescence will be useful for conducting further research. Sh-L might be an excellent preparation for future clinical application to cancer patients.


Nanomedicine ◽  
2020 ◽  
Vol 15 (15) ◽  
pp. 1487-1499
Author(s):  
Yaofa Lin ◽  
Ronghua Yu ◽  
Gang Yin ◽  
Zixian Chen ◽  
Haodong Lin

Aim: To deliver syringic acid (SA) with a nanocarrier and enhance its function. Materials & methods: mPEG-PLGA-PLL (PEAL) nanoparticles were used to deliver SA. The characterization, storage stability, drug release, blood-compatibility and biocompatibility of SA-PEAL were detected by in vitro and in vivo assays. Cellular phenotypic experiments and rat sciatic nerve injury models were used to evaluate the function of SA-PEALs. Results: SA-PEAL had good storage stability, blood-compatibility and biocompatibility and could slowly release SA. SA-PEAL significantly enhanced the proliferation and migration ability of Schwann cells and function recovery of injured sciatic nerves. Conclusion: Our study provides an effective nano-delivery system for enhancing the neural repair function of SA and promoting further applications of SA.


1992 ◽  
Vol 20 (2-4) ◽  
pp. 619-626 ◽  
Author(s):  
Richard O. Cliff ◽  
Frances Ligler ◽  
Beth Goins ◽  
Peter M. Hoffmann ◽  
Helmut Spielberg ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Christoph Castellani ◽  
Beate Obermüller ◽  
Bernhard Kienesberger ◽  
Georg Singer ◽  
Clemens Peterbauer ◽  
...  

Background: Probiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases.Methods: Reuterin supernatant was cultured from Lentilactobacillus diolivorans in a bioreactor in a two-step process. Storage stability at −20°C and effect of repeated freeze-thaw cycles were assessed by high performance liquid chromatography (HPLC). Antimicrobial activity was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus (S.) aureus, Staphylococcus epidermidis, Streptococcus (S.) agalactiae, Propionibacterium acnes, and Pseudomonas aeruginosae. Male BALBc mice were gavage fed with reuterin supernatant (n = 10) or culture medium (n = 10). Fecal volatile organic compounds (VOC) were assessed by gas chromatography mass spectroscopy; the microbiome was examined by 16S rRNA gene sequencing.Results: The supernatant contained 13.4 g/L reuterin (3-hydroxypropionaldehyde; 3-HPA). 3-HPA content remained stable at −20°C for 35 days followed by a slow decrease of its concentration. Repeated freezing/thawing caused a slow 3-HPA decrease. Antimicrobial activity was encountered against S. aureus, S. epidermidis, and S. agalactiae. Microbiome analysis showed no differences in alpha and beta diversity markers. Linear discriminant effect size (LEfSe) analysis identified Lachnospiraceae_bacterium_COE1 and Ruminoclostridium_5_uncultured_Clostridiales_ bacterium (in the reuterin medium group) and Desulfovibrio_uncultured_ bacterium, Candidatus Arthromitus, Ruminococcae_NK4A214_group, and Eubacterium_xylanophilum_group (in the reuterin group) as markers for group differentiation. VOC analysis showed a significant decrease of heptane and increase of 3-methylbutanal in the reuterin group.Conclusion: The supernatant produced in this study contained acceptable amounts of 3-HPA remaining stable for 35 days at −20°C and exhibiting an antimicrobial effect against S. aureus, S. agalactiae, and S. epidermidis. Under in vivo conditions, the reuterin supernatant caused alterations of the fecal microbiome. In the fecal, VOC analysis decreased heptane and increased 3-methylbutanal were encountered. These findings suggest the high potential of the reuterin system to influence the intestinal microbiome in health and disease, which needs to be examined in detail in future projects.


2020 ◽  
Vol 21 (4) ◽  
pp. 1262 ◽  
Author(s):  
Nuno H. C. S. Silva ◽  
Joana P. Mota ◽  
Tânia Santos de Almeida ◽  
João P. F. Carvalho ◽  
Armando J. D. Silvestre ◽  
...  

Bacterial nanocellulose (BNC) membranes have enormous potential as systems for topical drug delivery due to their intrinsic biocompatibility and three-dimensional nanoporous structure, which can house all kinds of active pharmaceutical ingredients (APIs). Thus, the present study investigated the long-term storage stability of BNC membranes loaded with both hydrophilic and lipophilic APIs, namely, caffeine, lidocaine, ibuprofen and diclofenac. The storage stability was evaluated under accelerated testing conditions at different temperatures and relative humidity (RH), i.e., 75% RH/40 °C, 60% RH/25 °C and 0% RH/40 °C. All systems were quite stable under these storage conditions with no significant structural and morphological changes or variations in the drug release profile. The only difference observed was in the moisture-uptake, which increased with RH due to the hydrophilic nature of BNC. Furthermore, the caffeine-loaded BNC membrane was selected for in vivo cutaneous compatibility studies, where patches were applied in the volar forearm of twenty volunteers for 24 h. The cutaneous responses were assessed by non-invasive measurements and the tests revealed good compatibility for caffeine-loaded BNC membranes. These results highlight the good storage stability of the API-loaded BNC membranes and their cutaneous compatibility, which confirms the real potential of these dermal delivery systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ju Yuan ◽  
Yu Lu ◽  
Saifuding Abula ◽  
Yuanliang Hu ◽  
Jiaguo Liu ◽  
...  

The aim of this study is to prepare propolis flavonoids liposome (PFL) and optimize the preparation condition and to investigate further whether liposome could promote the immunoenhancement activity of propolis flavonoids (PF). PFL was prepared with ethanol injection method, and the preparation conditions of PFL were optimized with response surface methodology (RSM). Moreover, the immunoenhancement activity of PFL and PFin vitrowas determined. The result showed that the optimal preparation conditions for PFL by response surface methodology were as follows: ratio of lipid to drug (w/w) 9.6 : 1, ratio of soybean phospholipid to cholesterol (w/w) 8.5 : 1, and speed of injection 0.8 mL·min−1. Under these conditions, the experimental encapsulation efficiency of PFL was 91.67 ± 0.21%, which was close to the predicted value. Therefore, the optimized preparation condition is very reliable. Moreover, the results indicated that PFL could not only significantly promote lymphocytes proliferation singly or synergistically with PHA, but also increase expression level of IL-2 and IFN-γmRNA. These indicated that liposome could significantly improve the immunoenhancement activity of PF. PFL demonstrates the significant immunoenhancement activity, which provides the theoretical basis for the further experimentin vivo.


Sign in / Sign up

Export Citation Format

Share Document