Assessment and dynamic nonlinear analysis of different base isolation systems for a multi-storey RC building irregular in plan

2017 ◽  
Vol 180 ◽  
pp. 74-88 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio De Angelis
2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


2012 ◽  
Vol 594-597 ◽  
pp. 1771-1782 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present paper we have analyzed a multi-storey reinforced concrete (RC) building in presence of a hybrid seismic protection system for highlighting the limits of the conventional fixed base seismic design of structures. This hybrid seismic protection system is a passive structural control system that combines the Base Isolation System (BIS) and the Passive Supplemental Damping (PSD). The Viscous Dampers (VS) and Friction Sliders (FS) are the devices adopted in parallel for realizing the innovative base isolation system. The fixed base structure and the base isolated structure have been designed and verified according to the European seismic code EC8 and the European code for the design of concrete structures EC2. A three-dimensional dynamic nonlinear analysis for a base isolated structure has been performed adopting recorded accelerograms for the defined bi-directional ground motions according to the conditions imposed by EC8. The seismic isolation is a promising alternative for the earthquake resistant design of buildings and its peculiarity is that the base isolated buildings are designed such that the superstructure remains elastic and the nonlinearities are localized at the isolation level. In this paper a comparative analysis is presented between the base isolated structure, with the viscous dampers in parallel with friction sliders, and the traditional fixed-base structure.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


2020 ◽  
Vol 10 (24) ◽  
pp. 9150
Author(s):  
Hyung-Joon Kim ◽  
Dong-Hyeon Shin

The promising seismic response emerged by the concept of base isolation leads to increasing practical applications into buildings located at low-to-moderate seismicity regions. However, it is questionable that their collapse capacities can be ensured with reasonable reliability, although they would be designed according to a current seismic design code. This paper aims to investigate the collapse capacities of isolated buildings governed by the prescribed design criteria on the displacement and strength capacities of the employed isolation systems. In order to evaluate their collapse capacity under maximum considered earthquakes (MCEs), simplified numerical models are constructed for a larger number of nonlinear incremental dynamic analyses. The influential factors on the collapse probabilities of the prototype buildings are found out to specifically suggest the potential modifications of the design requirements. Although the MCE collapse probabilities of all isolated buildings are smaller than those expected for typical non-isolated buildings, these values are significantly different according to the degree of seismicity. The MCE collapse probabilities are dependent upon the governing collapse mechanism and the total system uncertainty. For the prototype buildings located at low-to-moderate seismicity regions, this study proposed the acceptable uncertainty to achieve a similar collapse performance to the corresponding buildings built at high seismicity regions.


1991 ◽  
Vol 10 (3) ◽  
pp. 152-171 ◽  
Author(s):  
F.-G. Fan ◽  
G. Ahmadi ◽  
N. Mostaghel ◽  
I.G. Tadjbakhsh

2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


Author(s):  
Takashi Kawai ◽  
Yasuo Tsuyuki ◽  
Yutaka Inoue ◽  
Osamu Takahashi ◽  
Koji Oka

This paper deals with one of the applications of the Semi-Active Oil Damper system, which applies base isolation systems reducing the maximum acceleration. The theory of the Semi-Active Oil Damper system is based on Karnopp Theory. The theory has been actually now in use for a Semi-active suspension system of the latest Shinkansen (New trunk lines) trains to improve passenger’s comfortable riding. Various experiments have been conducted using a single mass model whose weight is 15 ton on the shaking table. This model is supported by the rubber bearing. The natural frequency is 0.33Hz of this system. Two Semi-Active Oil Damper were installed in the model and excited the table for one horizontal direction. The maximum damping force of each Semi-Active Oil Damper used for the model is 4.21 kN. The damper can change the damping coefficient by utilizing two solenoid valves. Therefore, the dynamic characteristic of the damping force has two modes. One is a hard damping coefficient and the other is a soft one. It was confirmed that the maximum acceleration of the Semi-Active Oil Damper system can be reduced more than 20% in comparison with the passive Oil Damper system in our tests.


Sign in / Sign up

Export Citation Format

Share Document