Intense pulsed light surface treatment for improving adhesive bonding of aluminum and carbon fiber reinforced plastic (CFRP)

2021 ◽  
Vol 258 ◽  
pp. 113364
Author(s):  
Jae-Ha Kim ◽  
Choong-Jae Lee ◽  
Kyung Deuk Min ◽  
Byeong-Uk Hwang ◽  
Dong Gil Kang ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 556 ◽  
Author(s):  
Kyeng-Bo Sim ◽  
Dooyoung Baek ◽  
Jae-Ho Shin ◽  
Gyu-Seong Shim ◽  
Seong-Wook Jang ◽  
...  

Carbon fiber reinforced plastic (CFRP) is currently used as a lightweight material in various parts of automobiles. However, fiber reinforced plastic (FRP) material may be damaged at the time of joining via mechanical bonding; therefore, adhesion is important. When bonding is conducted without surface CFRP treatment, interfacial destruction occurs during which the adhesive falls off along with the CFRP. Mechanical strength and fracture shape were investigated depending on the surface treatment (pristine, plasma treatment times, and plasma treatment times plus epoxy modified primer coating). The plasma treatment effect was verified using the contact angle and X-ray photoelectron spectroscopy. The wettability of the epoxy modified primer (EMP) coating was confirmed through surface morphology analysis, followed by observation of mechanical properties and fracture shape. Based on test data collected from 10 instances of plasma treatment, the EMP coating showed 115% higher strength than that of pristine CFRP. The adhesive failure shape also changed from interfacial failure to mixed-mode failure. Thus, applying an EMP coating during the automotive parts stage enhances the effect of CFRP surface treatment.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


2021 ◽  
pp. 073168442098359
Author(s):  
Luyao Xu ◽  
Jiuru Lu ◽  
Kangmei Li ◽  
Jun Hu

In this article, a micro-heterogeneous material simulation model with carbon fiber and resin phase about laser ablation on carbon fiber reinforced plastic (CFRP) is established by Ansys. The ablation process of CFRP by nanosecond ultraviolet laser is simulated, and the mechanism of pulse energy and spot spacing on the heat-affected zone (HAZ) is studied, then the process parameters are optimized with the goal of HAZ size and processing efficiency, and finally the validity of the model is verified by experiments. It is found that the residual gradient and the width of the radial HAZ increase with the increase of the spot spacing, and the width of the axial HAZ decreases slightly with the increase of the spot spacing, which indicates the existence of the optimal spot spacing. Second, the ablation depth increases with the increase of the pulse energy, and the carbon fiber retains a relatively complete degree of exposure when the pulse energy is low, which has a certain guiding significance for the cleaning and bonding of CFRP.


Sign in / Sign up

Export Citation Format

Share Document