Effects of thermal cycles on mechanical properties of an optimized polymer concrete

2011 ◽  
Vol 25 (8) ◽  
pp. 3540-3549 ◽  
Author(s):  
M.M. Shokrieh ◽  
M. Heidari-Rarani ◽  
M. Shakouri ◽  
E. Kashizadeh
2021 ◽  
Vol 28 (1) ◽  
pp. 343-351
Author(s):  
Norbert Kępczak ◽  
Radosław Rosik ◽  
Mariusz Urbaniak

Abstract The paper presents an impact of the addition of industrial machining chips on the mechanical properties of polymer concrete. As an additional filler, six types of industrial waste machining chips were used: steel fine chips, steel medium chips, steel thick chips, aluminium fine chips, aluminium medium chips, and titanium fine chips. During the research, the influence of the addition of chips on the basic parameters of mechanical properties, i.e., tensile strength, compressive strength, splitting tensile strength, and Young’s modulus, was analyzed. On the basis of the obtained results, conclusions were drawn that the addition of chips from machining causes a decrease in the value of the mechanical properties parameters of the polymer concrete even by 30%. The mechanism of cracking of samples, which were subjected to durability tests, was also explored. In addition, it was found that some chip waste can be used as a substitute for natural fillers during preparation of a mineral cast composition without losing much of the strength parameters.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3472
Author(s):  
Ma ◽  
Pan ◽  
Liu ◽  
Jiang ◽  
Liu ◽  
...  

Epoxy polymer concrete (EPC) has found increasing applications in infrastructure as a rising candidate among civil engineering materials. In most of its service environments, EPC is inevitably exposed to severe weather conditions, e.g., violent changes in temperature, rain, and ultraviolet (UV) radiation. In this paper, we designed an accelerated aging test for EPC, which includes periodic variation of temperature and water spray, as well as intensive UV-light irradiation, imitating the outdoor environment in South China. The experimental results show that the flexural performance of EPC is found deteriorate with the aging time. An aging process equivalent to four years (UV radiation dose) results in up to 8.4% reduction of flexural strength. To explore the mechanisms of observed performance degradation, the EPC specimen in the four-point-bending test is considered as a layered beam. The analysis indicates that the loss of flexural load-carrying capacity of an aged EPC beam is dominated by the reduction of mechanical properties of the surface layer. The mechanical properties of the surface layer are closely associated with the aging of epoxy mortar, which can be approximated as a reciprocal function of the aging time. By introducing damage to the surface layer into the layered beam, the proposed model demonstrates a good ability to predict the residual flexural strength of EPC during the aging process


Author(s):  
Fumitada Iguchi ◽  
Hiromichi Kitahara ◽  
Hiroo Yugami

The mechanical properties of Ni-YSZ cermets at high temperature in reduction atmosphere were evaluated by the four points bending method. We studied the influences of reduction and thermal cycles, i.e. a cycle from R.T. to 800°C, to flexural strength and Young’s modulus. The flexural strength of Ni-YSZ at room temperature was lower than that of NiO-YSZ by about 10 to 20% mainly caused by the increment of porosity. But, the flexural strength of Ni-YSZ at 800°C was drastically decreased by an half of that at R.T. In addition, the stress–strain diagram of Ni-YSZ at 800°C indicated that it showed weak ductility. The maximum observed strain was over 0.5% at 30MPa. On the contrary, NiO-YSZ showed only brittlely at 800°C. The difference was caused by Ni metal in the Ni-YSZ cermets. Therefore, it was expected that Ni-YSZ is easily deformed in operation, though residual stress between an anode and an electrolyte was low. The influence of thermal cycles to flexural strength and Young’s modulus was not observed clearly. At the same time, the differences of microstructure were not observed. Therefore, it was concluded that the cycle does not change mechanical properties significantly.


Author(s):  
Vankudothu Bhikshma ◽  
Kandiraju Promodkumar ◽  
Putta Panduranghiah

The demand for concrete is increasing day by day. As the consumption of cement is increased, environmental issues arise due to the release of CO2 during the manufacturing of cement. The objective of this research work is to produce a pollution free concrete with a combination of fly ash and GGBS (Ground granulated blast furnace slag) and without the use of cement. In this paper an attempt was made to study the mechanical properties of high strength geo-polymer concrete of grade M60 using GGBS, fly ash and micro silica. The testing program was planned for the mechanical properties of geo-polymer concrete and flexural behavior of corresponding beams. The experimental results indicated that the geo-polymer concrete M60 grade has a compressive strength of 70.45 MPa at the age of 28 days cured at ambient condition. Further, flexural strength and split tensile strengths for M60 grade high strength geo-polymer concrete at 28 days were observed to be 5.45 MPa and 3.63 MPa respectively. The modulus of elasticity was higher than the theoretical value proposed by IS 456-2000. It was also observed that the load carrying capacity of M60 grade high strength geo-polymer concrete found to be more than corresponding grade conventional concrete. The load-deflection, moment-curvature relationships were studied. The experimental results were encouraging to continue for further research in the area high strength geo-polymer concrete.


Sign in / Sign up

Export Citation Format

Share Document