An extensive laboratory investigation of the use of bio-oil modified bitumen in road construction

2016 ◽  
Vol 106 ◽  
pp. 133-139 ◽  
Author(s):  
Alvaro Guarin ◽  
Abdullah Khan ◽  
Ali Azhar Butt ◽  
Björn Birgisson ◽  
Nicole Kringos
2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 420 ◽  
Author(s):  
Elena Gaudenzi ◽  
Fabrizio Cardone ◽  
Xiaohu Lu ◽  
Francesco Canestrari

The analysis of fatigue behavior of bituminous binders is a complex issue due to several time-temperature dependent phenomena which interact simultaneously, such as damage accumulation, viscoelasticity, thixotropy, and healing. The present research involves rheological measurements aimed at evaluating the fatigue behavior and compares the self-healing capability of two plain bitumen and a bio-binder obtained by partially replacing one of the plain bitumen with a renewable bio-oil. Healing potential was assessed by means of an experimental approach previously implemented for modified bitumen and bituminous mastic and based on the use of a dynamic shear rheometer (DSR). The effects of some variables such as bitumen type, bio-oil addition, and aging on the healing potential of binders were taken into account. Results showed that the above-mentioned method for healing analysis is also suitable for conventional and bio-add binders. Outcomes of the experimental investigation highlight that fatigue and self-healing are mainly dependent on binder consistency and also affected by aging. Finally, the addition of bio-oil may induce even better performances in terms of healing potential compared to conventional bitumen, especially in aged condition.


2018 ◽  
Vol 7 (4.7) ◽  
pp. 13 ◽  
Author(s):  
G. H. Shafabakhsh ◽  
S. R.Sajadib ◽  
. .

Nowadays, one of the most challenging problems facing civil and transportation engineers, which consumes plenty of budgets (causes large amount of cost) for maintenance of asphalt roads, is asphalt destructions. Lots of efforts are done in order to increase the resistance and life span of asphalt, including development of bitumen properties. Bitumen is used broadly in road construction due to its appropriate properties; however, it has some major deficiencies which may lead to destructions of asphalt pavements. Therefore different bitumen modifications are implemented to achieve desired properties for different objectives, including (Such as) using rubber powder, waste materials, various polymers, etc. Recently, researchers are turning to nanotechnology to improve bitumen properties. Conducted studies on this topic (conducted research in this field) show that using modified bitumen by nanomaterial, increases the capacity of the pavement’s load bearing and decreases probable cracks due to fatigue during the operation life of the pavement. In this study, Nano Copper Oxide is used to develop rheological properties of bitumen. Nanoparticles have been added to bitumen with amount of 2.5, 3 and 5 percent and then Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR) experiments have been conducted to investigate the effects of using nanoparticles in pure bitumen. Results show that adding Copper Oxide nanoparticles to bitumen improves the performance of base bitumen, especially at middle and low temperatures. 


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3025 ◽  
Author(s):  
Syyed Raheel Shah ◽  
Hunain Arshad ◽  
Ahsan Waqar ◽  
Muhammad Saeed ◽  
Salman Hafeez ◽  
...  

Energy consumption and material production are two major factors associated with the road construction industry. Worldwide, millions of tons of hot mix asphalt production consume a huge amount of fuel as an energy source in terms of quantity and cost to achieve the standard temperature of up to 170 °C during the mixing process. Modification of bitumen can not only reduce its usage but also the consumption of energy (fuel) during the asphalt mix production process at low temperatures. This study provides a method to save energy by proposing the addition of bitumen modifier in the road construction sector. Furthermore, to make it compatible with the field conditions for road construction, stability analysis is executed on the prepared samples by partially replacing the bitumen with polyurethane foam (PUF) and plastic waste (PW) (at 10%, 20%, 30%, 40%, and 50%). Experimental results demonstrate a reasonable saving in the amount of energy (33%) and material (40% bitumen) used and showed that similar strength of developed asphalt mix can be achieved using PUF. An extensive calculation concludes that these savings could make a huge difference in construction economics of mega road infrastructure projects, especially during an energy crisis.


2019 ◽  
Vol 15 (4) ◽  
pp. 528-531
Author(s):  
Norhidayah Abdul Hassan ◽  
Nur Azni Ruzi ◽  
Nurul Athma Mohd Shukry ◽  
Ramadhansyah Putra Jaya ◽  
Mohd Rosli Hainin ◽  
...  

The addition of modifier, either to replace bitumen or as an additive, could potentially improve the performance of conventional bitumen used in road construction. This study characterizes the physical properties of bitumen 80/100 penetration grade modified with diatomite powder and waste engine oil (WEO). Different percentages of WEO i.e. 1%, 2%, and 3%, were added with 1% diatomite to the bitumen. The conventional and modified bitumen samples were tested for penetration, softening point, viscosity, and loss on heating. Results showed that the increase of WEO content, particularly at 3% in the modified bitumen, has softened the bitumen with lower softening point and higher loss on heating than the unmodified sample. In contrast, the diatomite powder has shown potential in reinforcing the bitumen structure at high temperature based on higher viscosity obtained at 165°C compared to conventional bitumen.


2021 ◽  
Vol 15 (58) ◽  
pp. 65-76
Author(s):  
Kebaili Kebaili ◽  
Mohammed Boucherba ◽  
Mohamed Djouhri ◽  
Mustapha Kebaili

In road construction, bitumen is the binder that gathered the different aggregates of road pavements. Bitumen, as a viscoelastic material, influences considerably the rheological behavior of bitumen concrete. The bitumen used in Algeria, showed its limits face to the traffic, which is increasing continuously. This research aims to valorize SBS polymer in wearing course by modifying a pure 35/50 bitumen. The present paper aims to study the polymer derived from styrene and butadiene (SBS) from the company Kraton Polymers International Ltd in the modification of a bitumen to improve its mechanical characteristics.To this end, the incorporation of SBS polymer was carried out according to two contents: 5.0 and 7.5% (by weight of asphalt), the objective being to evaluate the influence of this type of polymer on the rheological properties of the bitumen ordinary road including viscosity and modulus.The results reveal that the bitumen modified with 7.5% of SBS has better mechanical performance on the rigidity and the elasticity compared to the conventional bitumen. Recommendations have been made to implement a bitumen modification system to improve its quality and therefore the durability of bituminous pavements in the south of Algeria.


Sign in / Sign up

Export Citation Format

Share Document