Mechanical properties and resistance to chloride ion permeability of epoxy emulsion cement mortar reinforced by glass flake

2017 ◽  
Vol 155 ◽  
pp. 137-144 ◽  
Author(s):  
Jiandong Zuo ◽  
Huabing Li ◽  
Biqin Dong ◽  
Chaoyun Luo ◽  
Dazhu Chen
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1652 ◽  
Author(s):  
Jianghu Lu ◽  
Zhexuan Yu ◽  
Yuanzhe Zhu ◽  
Shaowen Huang ◽  
Qi Luo ◽  
...  

There is a universally accepted view that environmental pollution should be controlled while improving cement mortar natural abilities. The purpose of this study is to develop a green cement mortar that has better compressive strength and anti-chloride ion permeability. Two industrial wastes, lithium-slag and slag, were added to cement mortar, and the role of lithium-slag was to activate slag. In addition, to save economic and time costs, this paper also used the least-squares support vector machine (LS-SVM) method to predict the property changes of cementitious-based materials. Then multiple natural abilities of samples, including compressive strength, anti-chloride ion permeability, and fluidity, were tested. In addition, LS-SVM and traditional support vector machine (SVM) were used to train and forecast the performance, including compressive strength. The results show that lithium-slag can activate slag to improve the compressive strength, anti-chloride ion permeability of mortar, and LS-SVM sharpens accuracy by 11% compared to SVM.


2021 ◽  
Vol 10 (1) ◽  
pp. 1395-1409
Author(s):  
Changjiang Liu ◽  
Xin Su ◽  
Yuyou Wu ◽  
Zhoulian Zheng ◽  
Bo Yang ◽  
...  

Abstract Nano-silica (NS) is one of the most important nanomaterials in recent years. It is used as a new cement-based composite reinforcement in building materials because of its high volcanic ash activity. In order to achieve the goal of carbon peaking and carbon neutralization, combined with the research idea of cementitious materials-reducing admixture for concrete, under the condition of reducing the amount of cement in concrete by 20%, the influence of different dosages of NS on the setting time and mechanical properties of concrete was analyzed. In addition, the shrinkage performance, impermeability, and resistance to chloride-ion permeability of concrete were also studied. The results show that under the same curing conditions and ages, when the NS dosage is 2.5%, the compressive strength and splitting tensile strength of the specimen after 28 days of curing are the highest, reaching 40.87 and 3.8 MPa, which show an increase by 6.6 and 15.15%. The shrinkage performance of concrete increases with the increase in NS dosage. In addition, when the NS dosage is 2.0%, the durability of concrete has also been greatly improved. The impermeability of concrete increased by 18.7% and the resistance to chloride-ion permeability increased by 14.7%. Through microscopic analysis it was found that NS can promote the hydration reaction, generate more hydration products such as calcium silicate hydrate (C–S–H), enhance the interfacial adhesion between the matrix and the aggregate, and form a closer interfacial transition zone. Moreover, the addition of NS also reduces the cumulative pore volume in concrete, refines the pore size, and makes the internal structure of concrete denser.


2015 ◽  
Vol 1129 ◽  
pp. 169-176
Author(s):  
Sunhee Hong ◽  
Wan Ki Kim

This study is to examine and clarify the quality of polymer-modified mortars using a VA/E/MMA terpolymer powder as compared with polymer-modified mortars using a VAE copolymer powder. Polymer-modified mortars using general commercial redispersible polymer powders are prepared with various polymer-cement ratios, and tested for flexural and compressive strengths, tensile strength, water absorption, chloride ion penetration, carbonation and pore size distribution by mercury porosimetry. Overall, the properties of polymer-modified mortars using a VA/E/MMA terpolymer powder were superior to those of polymer-modified mortars using a VAE copolymer powder. And VA/E/MMA terpolymer powder-modified mortars showed significantly improved mechanical properties and durability in comparison with unmodified mortar. It is concluded from the test results that the modification of cement mortar with redispersible polymer powder improves the properties of unmodified mortar, and VA/E/MMA terpolymer powder has higher quality than VAE copolymer powder.


2018 ◽  
Vol 765 ◽  
pp. 383-390
Author(s):  
Hadi Vafaeinejad ◽  
Mahdi Kioumarsi

The penetration of water and chloride ion into the concrete is of factors that cause rust and corrosion in rebars by reaching the existing reinforcement surface in reinforced concrete structures. In this study, effect of using Asphalt Plant Surplus Filler as a partial replacement of cement with replacement values of 0, 5, 10, 15 and 20% on permeability and electrical resistance of cement mortar were investigated with the aim of decreasing cement consumption. In order to determine the penetration of water, 10 cubic specimens with the size of 150 mm were made and tested. In order to determine chloride ion penetration, 20 cylindrical specimens with a length of 50 and a diameter of 100 mm were studied at the ages of 28 and 56 days. To test the electrical resistivity of cement mortar, 30 cubic specimens with the size of 100 mm were tested at the ages of 7, 28 and 56 days. According to the results of the experiments, adding filler to the cement mortar enhances the penetration of water and chloride ion. Electrical resistivity generally increases with the increase of specimen age. Furthermore, the filler increment indicates the reduction of electrical resistivity.


2013 ◽  
Vol 634-638 ◽  
pp. 2676-2679 ◽  
Author(s):  
Kai Zhang ◽  
Guo Xiao Xu ◽  
Jin Qiu You

The effects of epoxy emulsion on the mechanical properties and water and chloride permeability of cement mortar and concrete were experimentally studied. The results show that adding epoxy emulsion will improve the flexural and tensile strengths at both early (7 d) and later (28 d) ages, and the 28 d compressive strength of cement mortar, though the compressive strength at 7d will be decreased a little. The suitable dosage of epoxy emulsion is 6~10% (solid content) based on the mass of the cement in mortar. The water and chloride permeability of cement mortar are also remarkable improved when 6~10%epoxy emulsion is added.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6395
Author(s):  
Se-Jin Choi ◽  
Sung-Ho Bae ◽  
Jae-In Lee ◽  
Eun Ji Bang ◽  
Haye Min Ko

There have been numerous recent studies on improving the mechanical properties and durability of cement composites by mixing them with functional polymers. However, research into applying modified biopolymer such as catechol-functionalized chitosan to cement mortar or concrete is rare to the best of our knowledge. In this study, catechol-functionalized chitosan (Cat-Chit), a well-known bioinspired polymer that imitates the basic structures and functions of living organisms and biological materials in nature, was synthesized and combined with cement mortar in various proportions. The compressive strength, tensile strength, drying shrinkage, accelerated carbonation depth, and chloride-ion penetrability of these mixes were then evaluated. In the ultraviolet–visible spectra, a maximum absorption peak appeared at 280 nm, corresponding to catechol conjugation. The sample containing 7.5% Cat-Chit polymer in water (CPW) exhibited the highest compressive strength, and its 28-day compressive strength was ~20.2% higher than that of a control sample with no added polymer. The tensile strength of the samples containing 5% or more CPW was ~2.3–11.5% higher than that of the control sample. Additionally, all the Cat-Chit polymer mixtures exhibited lower carbonation depths than compared to the control sample. The total charge passing through the samples decreased as the amount of CPW increased. Thus, incorporating this polymer effectively improved the mechanical properties, carbonation resistance, and chloride-ion penetration resistance of cement mortar.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Sign in / Sign up

Export Citation Format

Share Document