Changes in color and thermal properties of fly ash cement mortar after heat treatment

2018 ◽  
Vol 165 ◽  
pp. 72-81 ◽  
Author(s):  
Yuliang Zhang ◽  
Qiang Sun ◽  
Xiuyuan Yang
2018 ◽  
Vol 69 (8) ◽  
pp. 2040-2044
Author(s):  
Georgeta Velciu ◽  
Virgil Marinescu ◽  
Adriana Moanta ◽  
Ladislau Radermacher ◽  
Adriana Mariana Bors

The influence of fly ash adittion (90 % fraction [ 100 mm) on the cement mortar characteristics was studied. The XRD, XRF, SEM and FTIR determinations indicated that fly ash used has a hollow microstructure of microsphere and cenosphere whose total content in SiO2, Al2O3 and Fe2O3 is 88.63 % and that of CaO and MgO of 8.55 %. The mechanical, thermal and dielectric determinations made on mortar samples with content of fly ash in the 0-40 % range have highlighted fact that the mechanical strength of cement mortars is maximal at 20 %, the increase in fly ash content leads to a decrease in relative density and thermal conductivity as well as and to increased dielectric losses tgd.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Author(s):  
Chidanand Patil ◽  
M. Manjunath ◽  
Sateesh Hosamane ◽  
Sneha Bandekar ◽  
Rubeena Athani

1989 ◽  
Vol 178 ◽  
Author(s):  
Kirsten G. Jeppesen

AbstractSpray dried absorption products (SDA) having special characteristics are used as substitutes for cement in the preparation of mortars; the qualities of the resulting mixed mortars are described. Conditions are described for mortar mixes, data for which were presented at the MRS Fall Meeting 1987.The influence of the composition of the SDA on water requirement and setting time has been studied. A full scale project involving 3 precast, reinforced concrete front-elements containing 20 and 30 wt.% SDA is described. Strength development, mineralogical composition and corrosion were monitored for two years.A non-standard freeze-thaw experiment was performed which compares mortars containing SDA and fly ash (FA) and also shows the effect of superplasticizer.The possibility of improving the SDA by grinding has been tested and a limited improvement has been found. The strength of the mixed mortars seems slightly influenced by the grain size of SDAGypsum (CaSO4·2H2O), synthetic calcium-sulphite (CaSO3·½H2O) and 2 SDAs have been used as retarders for cement clinker. Mortar test prisms have been cast and comparative strengths after curing for 3 years are reported


2011 ◽  
Vol 18 (6) ◽  
pp. 2275-2284 ◽  
Author(s):  
Muhammad J. Khan ◽  
Abdulhadi A. Al-Juhani ◽  
Reyad Shawabkeh ◽  
Anwar Ul-Hamid ◽  
Ibnelwaleed A. Hussein

2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2019 ◽  
Vol 8 (1) ◽  
pp. 1451-1460 ◽  
Author(s):  
Bingqian Yan ◽  
Kouame Joseph Arthur Kouame ◽  
Wensheng Lv ◽  
Peng Yang ◽  
Meifeng Cai

Sign in / Sign up

Export Citation Format

Share Document