Laboratory evaluation on residue in castor oil production as rejuvenator for aged paving asphalt binder

2018 ◽  
Vol 193 ◽  
pp. 276-285 ◽  
Author(s):  
Menglan Zeng ◽  
Junfeng Li ◽  
Wenqiang Zhu ◽  
Yinglin Xia
Author(s):  
Yanlong Liang ◽  
David Jones ◽  
John T. Harvey ◽  
Jeffery Buscheck

This paper evaluates the mechanical properties of rubberized asphalt binder and mix containing 5% and 10% rubber. This rubberized asphalt binder was manufactured in a field-blend process using devulcanized rubber particles, finer than 250 microns, derived from waste tires. Comparison between the rubberized binder and the base binder test results showed that the rubberized binders had higher complex moduli and lower phase angles at the grade temperature. They also had a higher percentage recovery in the multiple stress creep recovery test, and a significant creep stiffness reduction in the bending beam rheometer test. Given the low rubber content and small rubber particle size, this rubberized binder can be used in dense-graded mixes, whereas asphalt rubber binders, with larger rubber particles and higher rubber content (>15%), must be used in gap- or open-graded mixes. This rubberized dense-graded mix met the volumetric design criteria at the same binder content as the control mix prepared with the unmodified base binder. Laboratory tests on the mix included repeated load triaxial, Hamburg wheel track, flexural dynamic modulus, and beam fatigue. The rubberized mixes had slightly lower stiffnesses than the control mix, but better resistance to moisture damage, rutting, and fatigue cracking. A strong linear correlation was found between the carbonyl area index and the rheological properties of the long-term aged binder and fatigue life of the mixes. Based on these findings, these rubber-modified binders can be considered for use in dense-graded mixes to improve overall performance and make use of waste tires.


2014 ◽  
Vol 488-489 ◽  
pp. 550-553
Author(s):  
Xing Song Cao ◽  
Dong Wei Cao ◽  
Shi Xiong Liu ◽  
Xio Qiang Yang ◽  
Lin Lan

A novel high durability epoxy asphalt concrete for bridge deck pavements is introduced in this paper, including the manufacturing process of epoxy asphalt binder and laboratory evaluation for this material. Various laboratory tests were conducted to evaluate the pavement performance of the materials, such as fatigue test, wheel tracking test, moisture susceptibility test and thermal stress restrained specimen test. Test results show that epoxy asphalt concrete has 20137 cycles/mm dynamic stability at 70°C, and-28.4 °C fracture temperature. The fatigue equations of epoxy asphalt concrete at different temperatures were obtained. Findings from the research indicate that the epoxy asphalt concrete is a suitable material for the pavement of long-span steel bridges in China due to its profound performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Li Liu ◽  
You Huang ◽  
Zhaohui Liu

Asphalt pavement subjected to heavy traffic load and harsh environmental conditions can easily build up damage and shorten the service life. In this paper, different dosages of basalt fiber (BF) were introduced into crumb rubber (CR) modified asphalt binder, and a series of laboratory tests were carried out to evaluate the properties and performances. A dynamic shear rheometer (DSR) was employed to evaluate viscosity and rheological properties. Bending beam rheometer (BBR) test and direct tensile test (DTT) were conducted to test the low temperature property. Cone penetration was designed to test shear strength. Results show that the optimum content of BF is 0.3% by the weight of asphalt binder based on the overall performance evaluation. Viscosity, complex modulus, fatigue property, rutting resistance, and shear strength are improved by introducing BF into asphalt binder. Stiffness and elasticity are also increased. BBR indicates that ductility at low temperature is reduced a little by the presence of BF, but DTT shows that both tensile strength and elongation are improved by BF. Considering that DTT is more performance related, DTT is preferred over BBR to evaluate cracking potentials at low temperatures of asphalt binder modified with CR and BF. Finally, it is revealed through microscale scanning that three mechanisms, absorption of asphalt binder, 3-dimensional fiber network, and bridging effects, contribute to the performance improvement of asphalt binder modified with CR and BF.


2020 ◽  
Vol 12 (23) ◽  
pp. 10057
Author(s):  
Hyun Hwan Kim ◽  
Mithil Mazumder ◽  
Soon-Jae Lee ◽  
Moon-Sup Lee

In this study, thermoplastic polyurethane (TPU) and styrene-isoprene-styrene (SIS) were utilized to enhance asphalt binder properties. Superpave asphalt binder tests and multiple stress creep recovery (MSCR) were conducted to evaluate the physical and rheological performance (viscosity, rutting, and cracking properties) of the asphalt binders before and after short-term aging and after the long-term aging process. The results showed that (i) TPU has a positive effect on workability, including the mixing and compaction processes, which was evident from the reduced binder viscosity; (ii) asphalt binders with TPU and SIS showed better rutting resistance compared to the SIS binders without TPU; (iii) the cracking resistance of asphalt binders was found to be improved significantly with the addition of TPU; and (iv) TPU has the potential to be considered as a sustainable polymer modifier for producing bearable asphalt binders by improving rutting and crack resistance without increasing the melting temperature of the asphalt binders.


Author(s):  
Benjamin F. Bowers

The work presented attempts to address reflective cracking of asphalt-surfaced pavements through binder modification with a highly polymer (HP)-modified asphalt binder. Nine asphalt mixtures ranging from fine dense-graded mixtures to stone matrix asphalt (SMA) mixtures were investigated with conventional polymer modified binders and HP binder. The dynamic modulus test, overlay test (OT), and semi-circular bend (SCB) test were used to evaluate the mixtures. In the cracking tests, HP mixtures outperformed the conventionally modified control mixtures for the same mixture type. For HP mixtures, in general, SMA mixtures performed better in the cracking test than dense-graded mixtures. One of the dense-graded mixtures having larger nominal maximum aggregate size (NMAS) performed better than the mixture with a smaller NMAS, whereas the other having a larger NMAS was not significantly different in crack testing. Further, a discussion on the calculation of bulk specific gravity and percent air voids in a cut OT and SCB specimen using saturated surface dry or vacuum sealing methods is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liming Zhang ◽  
Xuekai Gao ◽  
Wensheng Wang ◽  
Hua Wang ◽  
Kunkun Zheng

Nanomaterials have a great potential for enhancing the performance of base asphalt binder. This study aims to promote the application of nano-TiO2/CaCO3 in bitumen and presents a study on rheological properties for TiO2/CaCO3 nanoparticle-bitumen. In this study, a series of laboratory experiments have been performed for bitumen with different nano-TiO2/CaCO3 dosages. Nano-TiO2/CaCO3-modified bitumen with optimum dosage was prepared for viscosity, dynamic shear rheometer (DSR), and beam bending rheometer (BBR) for assessing temperature sensitivity of bitumen, and the low-medium-high-temperature performances were analyzed for TiO2/CaCO3 nanoparticle-bitumen as well. Results show that bituminous mechanical properties were enhanced by TiO2/CaCO3, and based on the overall desirability analysis of various conventional tests, the reasonable dosage of nano-TiO2/CaCO3 was recommended as 5% by weight of base bitumen. Adding nano-TiO2/CaCO3 was beneficial to improve the viscosity and reduce the temperature sensitivity of bitumen. The capacities of bituminous rutting resistance as well as medium-temperature fatigue resistance were enhanced by the addition of nano-TiO2/CaCO3. However, BBR test shows that bituminous anticracking is reduced slightly. On this basis, the Burgers model is selected for clarifying the decrease in anticracking performance; that is, nano-TiO2/CaCO3 increased the stiffness modulus while increasing the viscosity of bitumen.


2020 ◽  
Vol 12 (20) ◽  
pp. 8383
Author(s):  
Dongdong Ge ◽  
Xiaodong Zhou ◽  
Siyu Chen ◽  
Dongzhao Jin ◽  
Zhanping You

Emulsified asphalt has been widely used in various surface treatment methods such as chip seal for low-volume road preservation. Using modified emulsified asphalt made it possible to use chip seal technology on medium- and even high-volume traffic pavements. The main objective of the study is to quantify the residue characteristics of rubber-modified emulsified asphalt and to assess the effectiveness of using crumb rubber to modify emulsified asphalt binder. The four emulsified asphalt residues used the distillation procedure. Then, the rheology characteristics of emulsified asphalt residue were evaluated. The Fourier transform infrared spectroscopy (FTIR) test analyzed the chemical change of emulsified asphalt during the aging procedure. The results indicate that the evaporation method cannot remove all the water in emulsified asphalt. The mass change during the rolling thin film oven (RTFO) process only represented the component change of emulsified asphalt binder residue. Both the high-temperature and low-temperature performance grade of the two emulsified asphalt binders with rubber were lower. The original asphalt binder adopted to emulsification had a crucial influence on the performance of emulsified asphalt. The rubber modification enhanced the property of the emulsified asphalt binder at low temperatures, and the improvement effect was enhanced as the rubber content in the emulsified asphalt was raised. The C=O band was more effective in quantifying the aging condition of the residue. The findings of this study may further advance the emulsified asphalt technology in pavement construction and maintenance.


Sign in / Sign up

Export Citation Format

Share Document