Development of a smart concrete block with an eccentric load sensing capacity

2021 ◽  
Vol 306 ◽  
pp. 124881
Author(s):  
Tae Uk Kim ◽  
Huy Viet Le ◽  
Jong Woong Park ◽  
Seung Kim Eock ◽  
Yun Jang ◽  
...  
1906 ◽  
Vol 61 (1578supp) ◽  
pp. 25282-25283
Author(s):  
O. U. Miracle

2020 ◽  
Vol 982 ◽  
pp. 201-206
Author(s):  
Jaksada Thumrongvut ◽  
Natthawat Pakwan ◽  
Samaporn Krathumklang

In this paper, the experimental study on the pultruded fiber-reinforced polymer (pultruded FRP) angle beams subjected to transversely eccentric load are presented. A summary of critical buckling load and buckling behavior for full-scale flexure tests with various span-to-width ratios (L/b) and eccentricities are investigated, and typical failure mode are identified. Three-point flexure tests of 50 pultruded FRP angle beams are performed. The E-glass fibre/polyester resin angle specimens are tested to examine the effect of span-to-width ratio of the beams on the buckling responses and critical buckling loads. The angle specimens have the cross-sectional dimension of 76x6.4 mm with span-to-width ratios, ranging from 20 to 40. Also, four different eccentricities are investigated, ranging from 0 to ±2e. Eccentric loads are applied below the horizontal flange in increments until beam buckling occurred. Based upon the results of this study, it is found that the load and mid-span vertical deflection relationships of the angle beams are linear up to the failure. In contrast, the load and mid-span lateral deflection relationships are geometrically nonlinear. The general mode of failure is the flexural-torsional buckling. The eccentrically loaded specimens are failed at critical buckling loads lower than their concentric counterparts. Also, the quantity of eccentricity increases as buckling load decreases. In addition, it is noticed that span-to-width ratio increases, the buckling load is decreased. The eccentric location proved to have considerable influence over the buckling load of the pultruded FRP angle beams.


2021 ◽  
pp. 039139882199939
Author(s):  
Abdul Hadi Abdul Wahab ◽  
Nor Aqilah Mohamad Azmi ◽  
Mohammed Rafiq Abdul Kadir ◽  
Amir Putra Md Saad

Glenoid conformity is one of the important aspects that could contribute to implant stability. However, the optimal conformity is still being debated among the researchers. Therefore, this study aims to analyze the stress distribution of the implant and cement in three types of conformity (conform, non-conform, and hybrid) in three load conditions (central, anterior, and posterior). Glenoid implant and cement were reconstructed using Solidwork software and a 3D model of scapula bone was done using MIMICS software. Constant load, 750 N, was applied at the central, anterior, and posterior region of the glenoid implant which represents average load for daily living activities for elder people, including, walking with a stick and standing up from a chair. The results showed that, during center load, an implant with dual conformity (hybrid) showed the best (Max Stress—3.93 MPa) and well-distributed stress as compared to other conformity (Non-conform—7.21 MPa, Conform—9.38 MPa). While, during eccentric load (anterior and posterior), high stress was located at the anterior and posterior region with respect to the load applied. Cement stress for non-conform and hybrid implant recorded less than 5 MPa, which indicates it had a very low risk to have cement microcracks, whilst, conform implant was exposed to microcrack of the cement. In conclusion, hybrid conformity showed a promising result that could compromise between conform and non-conform implant. However, further enhancement is required for hybrid implants when dealing with eccentric load (anterior and posterior).


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4104
Author(s):  
Nassr Al-Baradoni ◽  
Peter Groche

In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of 3D displacements, occurring due to structure deformation under load in a single image. The displacement of defined features in size and position can be accurately analyzed and determined through digital image correlation (DIC). Validation on a prototype shows good accuracy of the measurement and a unique identification of all in- and out-of-plane displacement components under multiaxial load. Measurements show a maximum deviation related to the maximum measured values between 2.5% and 4.8% for uniaxial loads ( and between 2.5% and 10.43% for combined bending, torsion and axial load. In the course of the investigations, the measurement inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well as to eccentric load.


Sign in / Sign up

Export Citation Format

Share Document