Influencing factors and mechanisms of blistering in epoxy asphalt mixtures for steel deck pavements

2022 ◽  
Vol 316 ◽  
pp. 126036
Author(s):  
Menghui Liao ◽  
Rong Luo
2013 ◽  
Vol 652-654 ◽  
pp. 1221-1225
Author(s):  
Chun Chen ◽  
Zhen Dong Qian ◽  
Yong Quan Wang

According to Superpave mix design method, a thermosetting material (Epoxy Asphalt mixture) was designed for surfacing on orthotropic steel deck bridge. Firstly, based on the thermosetting feature, the viscosity increasing law of EA binder was studied by Brookfield test. Then, some characteristic indexes of EA mixture, such as the prior mixing time and the reserved time, were determined according to the viscosity increasing law and recommended viscosity range for mixing and compaction. Finally, using these characteristic indexes, an EA mixture with 3.0% air voids was designed by volumetric mixture design procedure of Superpave method. The results show: 1) different from other asphalt mixtures, the characteristic indexes of end mixing time and reserved time should be applied in EA mixture design because of the thermosetting character of EA binder; 2) the EA mixture designed by Superpave method in this paper has a higher EA binder content than that designed by conventional Marshall method.


2010 ◽  
Vol 168-170 ◽  
pp. 916-919
Author(s):  
Ke Fei Liu

Epoxy asphalt has fundamentally changed the thermoplastic of asphalt and endowed the asphalt with excellent physical and mechanical properties. This paper analyses the developing technical requirement of thermosetting epoxy asphalt and points out its main problems during preparation and application process. Aiming at the steel deck paving characteristics, the author has independently developed epoxy asphalt binder and tested its performances, the results have showed that this binder can meet the basic requirement of various pavings, and its further research are in process.


2016 ◽  
Vol 873 ◽  
pp. 91-95 ◽  
Author(s):  
Jing Ding ◽  
Sang Luo

To obtain a complete picture of the steel deck pavement condition on Jiangyin Yangtze River Bridge, an on-site survey for different pavement structures was conducted to collect information regarding traffic volume and extents of pavement distresses, including gussaphalt pavement, gussasphalt lower plus epoxy asphalt above pavement and double-layer epoxy asphalt pavement. The pavement performance under the combination of heavy truck loading and extreme climate condition was discussed to summarize the technology requirements of orthotropic steel deck pavement. The research findings provide reference for orthotropic steel deck paving worldwide.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4910
Author(s):  
Ping Zhang ◽  
Lan Ouyang ◽  
Lvzhen Yang ◽  
Yi Yang ◽  
Guofeng Lu ◽  
...  

As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development.


2020 ◽  
Vol 12 (9) ◽  
pp. 3531
Author(s):  
Mohammed Alamri ◽  
Qing Lu ◽  
Chunfu Xin

Designing long-life pavements and pavement recycling with reclaimed asphalt pavement (RAP) are two important strategies for improving the sustainability of asphalt pavements. Epoxy asphalt, as a proven long-life pavement material, is attracting attention from the pavement community for its use in road pavements. The recyclability of epoxy asphalt mixtures, however, has never been studied and has now become one concern in promoting the use of epoxy asphalt in road pavements. This study attempts to explore the performance of hot mix asphalt (HMA) containing reclaimed epoxy asphalt materials. Reclaimed epoxy asphalt was fabricated in the laboratory and incorporated into regular asphalt mixtures at various contents. Specimens were prepared and tested for their performance in comparison with mixtures without RAP. It was found that replacing the coarse aggregates in HMA with epoxy RAP up to 80% did not negatively affect its Marshall stability, tensile strength, and moisture resistance. The plastic deformation at failure of HMA, however, may increase with the increase in epoxy RAP content. At the current stage, the results from this study do not provide evidence to invalidate the use of epoxy RAP in HMA, at least at a coarse aggregate replacement rate of less than 40%.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-10
Author(s):  
Shatha S. Hasan ◽  
Rasha H. Abd Al-Ameer ◽  
Haider A. Hassani

The use of epoxy asphalt in road paving is one of the promising solutions for long-life road pavements in service with minimal maintenance. However, the high cost still stands as an obstacle to the widespread use of this high-performance material. The use of tire rubber waste (TRW) is one of the solutions in order to reduce costs, improve the environment, and improve the performance of epoxy asphalt mixtures, in addition to alleviating the brittle behaviour that epoxy asphalt tends to. This study proposes to add TRW in improving epoxy asphalt produced in local laboratories by using phenol Novolac resin as an epoxy curing agent of the epoxy base inside asphalt binder to produce and evaluate improved epoxy asphalt. The percentage of epoxy base used was 25% of the asphalt binder mixed with a 1:1 ratio of epoxy to Novolac using potassium hydroxide (KOH) as a catalyst. Whereas the proportions of added TRW were (1%, 2%, and 3%) of the total mixture weight by using the dry mixing method. The results showed, at its best values at 2% of TRW, that there was an increase in Marshall stability by 10%, and Marshall flow remained within specification limits with a decrease in the value of air voids at the highest bulk density, and a slight decrease in indirect tensile strength by 2%, with remaining excellent resistance to moisture sensitivity at 94%, and improvement in resistance to permanent deformation (rutting) by 14%. This indicates an improvement in the improved epoxy asphalt mixtures by the addition of TRW compared to the reference epoxy asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document