scholarly journals Data on the optimized sulphate electrolyte zinc rich coating produced through in-situ variation of process parameters

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 141-146 ◽  
Author(s):  
Ojo Sunday Isaac Fayomi
2003 ◽  
Vol 125 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Jonghyun Kim ◽  
Tess J. Moon ◽  
John R. Howell

Fully-transient, two-dimensional, heat transfer analysis for the simultaneous tape winding and in-situ curing of composite cylinders is presented. During processing, the orthotropic composites are continuously wound onto an isotropic mandrel and cured simultaneously by infrared (IR) heating. To most efficiently and effectively consider the continual accretion of composite, the model is formulated within a Lagrangian reference frame in which the heating source rotates while the coordinate system and composite are stationary. This enables prediction of composite temperature and degree-of-cure history from the first to last layer. Separate heat conduction equations are formulated for both the mandrel and composite cylinder. The composite cylinder’s outer surface is modeled as a moving boundary due to the accumulated layers. Exothermic heat generation due to the epoxy resin’s chemical reaction is included as a function of temperature and degree of cure. Numerical simulations using a control-volume-based finite difference method are run for a common graphite/epoxy (AS4/3501-6) composite. The Lagrangian approach was found to more accurately predict the in-situ curing temperature and degree-of-cure histories than the previously used, quasi-steady-state Eulerian approaches, which underpredict thermal losses. The model and its computational implementation were verified using analytical solutions and actual experiments. During winding, the top layer’s maximum temperature increases with total number of layers wound, demonstrating that a given incoming prepreg tape’s temperature history evolves with time. Moreover, with appropriate mandrel preheating, the inner layers can reach a very high degree of cure by the end of the winding process, revealing that the mandrel’s initial temperature has a significant effect on the composite’s temperature and degree-of-cure history. Substantial increases in the winding speed have little or no effect on the composite’s temperature history, but can significantly reduce the corresponding degree-of-cure. The development of structurally debilitating residual stresses are an important concern in selecting process parameters, such as winding speed and heating power. Taking advantage of the strong correlation between winding speed and IR heat flux, process windows can be used to guide the selection of manufacturing process parameters. These definitively show that there are thermodynamically imposed limits on how fast the cylinders may be wound and radiatively cured.


2021 ◽  
Vol 1027 ◽  
pp. 170-176
Author(s):  
Li Mei Wang ◽  
Jun Bo Liu ◽  
Jun Hai Liu

In order to improve the quality and properties of the coating, a certain amount of Ti was added to the plasma cladding Fe-Cr-C coating in the early stage. And Fe-Cr-C-Ti composite powder was prepared by precursor carbonization-composition process. In situ synthesized TiC-Fe-Cr coatings were fabricated on substrate of Q235 steel by plasma cladding process with Fe-Cr-C-Ti composite powder. Microstructure of the coating with different process parameters, including cladding current, cladding speed, number of overlapping cladding layers, were analyzed by scanning electron microscope (SEM). The results show that the structure of the TiC-Fe-Cr coating is greatly affected by the fusion current, the cladding speed and the overlapping cladding process. In this test, when the cladding current of 300A and the cladding process parameter of the cladding speed of 50 mm/min are clad with three layers, a well-formed and well-structured TiC-Fe-Cr coating can be obtained. Which are the best synthetic process parameters in this test.


2018 ◽  
Vol 12 (4) ◽  
pp. 491-503 ◽  
Author(s):  
Angel Leon ◽  
Clara Argerich ◽  
Anais Barasinski ◽  
Eric Soccard ◽  
Francisco Chinesta
Keyword(s):  

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 869
Author(s):  
Mathias Hilmer ◽  
Sebastian Gruber ◽  
Petra Foerst

This paper shows the development of a freeze-drying stage for in-situ μ-CT measurements. The stage can operate in a temperature range of −40 °C up to 70 °C, and a pressure range from atmospheric pressure to 7 Pa at the sample holder. To get the best visualization of the probe, it is fundamental that the materials around the sample holder are not absorbing most of the radiation. For this reason, we built an axial symmetrical stage built out of polyetheretherketon (PEEK). A test of the stage by different freeze-drying experiments with maltodextrin and sucrose particles and solutions demonstrated its suitability to visualize the freeze-drying processes in-situ. It was possible to track the drying front during the process by radiographic and tomographic measurements, as well as to visually resolve the ice crystals and porous structure in tomographic measurements. Using different samples and process parameters, we showed that the freeze-drying stage is not only suitable for in-situ µ-CT measurements, but also allows us to use the stage for other imaging methods such as neutron imaging, and for any sample where a controlled environment is needed.


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Ambrish Singh ◽  
Seema Negi ◽  
Sajan Kapil ◽  
K. P. Karunakaran ◽  
Manas Das

Abstract Anisotropy and omnidirectionality are the two most significant impediments to the growth of additive manufacturing (AM). While anisotropy is a property of the part, omnidirectionality is a characteristic of the machine tool. Omnidirectionality, implying invariance in AM processes with the goal of minimizing variations in material and geometric properties of the as-built parts, is often ignored during systems and process design. Disregard to directional sensitivity, which in some cases are inherent to the process (and/ or system), inadvertently changes the process parameter in-situ consequently, producing parts with non-uniform and often erratic properties. AM, attributing to its sheer number of processing variables, is especially susceptible to this subtle, yet significant system property. While some AM platforms, due to their nature of part production, are inherently omnidirectional, others require additional setup to ensure the same. Having an omnidirectional AM platform ensures that the parts are fabricated with process variables that are equally sensitive in all directions. In most AM systems, given a fixed set of process parameters, the spatial orientation of fusion (or joining) source vector, feedstock-delivery vector, and travel direction vector relative to each other governs omnidirectionality. Inconsistency or change in orientation of these three vectors results in non-uniform part properties and variations in geometric dimensions. Therefore, AM systems have to be omnidirectional to improve part performance and promote industrial acceptance. This paper, through a formal definition of omnidirectionality, analyses these three vectors individually along with their interplay with other process parameters and design variables.


2020 ◽  
Vol 978 ◽  
pp. 271-276
Author(s):  
Sahini Deepak Kumar ◽  
Shailesh Dewangan ◽  
Joyjeet Ghose ◽  
S.K. Jha

The present work reports the influence of various Electric-Discharge Machining (EDM) process parameters on the surface morphology and EDM characteristics of thixoformed A356-5TiB2 in-situ composites. The important EDM parameters such as pulse current, pulse-on time, Duty Cycle, etc. on Surface morphology and Material removal rate of the thixoformed A356-5TiB2 in-situ composites have been investigated. Further, the machining parameters were optimized using Fuzzy-logic and grey relational analysis approach. The effect of EDM parameters and their interactions on the erosion behavior of A356-5TiB2 in-situ composites on various aspects of surface integrity and Material Removal rate (MRR) is reported. The surface integrity during EDM was characterized by Scanning Electron Microscope and analyzed from the machinability point of view. Thus, this work is an attempt to study the machinability behavior of thixoformed A356-5TiB2 in-situ composites.


2018 ◽  
Vol 24 (13) ◽  
pp. 1434-1445 ◽  
Author(s):  
Lalit Kumar Khurana ◽  
Romi Singh ◽  
Harinder Singh ◽  
Manju Sharma

Background: The objective of this study was to apply Quality by Design (QbD) principles on process parameter optimization for the development of hybrid delivery system (combination of (SLNs) and In-situ gelling system) for hydrophilic drug Moxifloxacin Hydrochloride (MOX) to achieve its controlled delivery, which otherwise may not be possible through single type of technology. Methods: Risk assessment studies were carried out to identify probable risks influencing CQAs on the product. In design of experiments (DoE), the process parameters (independent variables) i.e., chiller temperature X1, High Pressure Homogenization (HPH) pressure X2, and HPH cycles X3 were optimized using a three-factor two level face-centered central composite design to streamline the influence on three responses, namely encapsulation efficiency Y1, particle size Y2 and outlet temperature Y3. Independent and dependent variables were analyzed to establish a full-model second-order polynomial equation. F value is used to confirm the omission of insignificant parameters/interactions to derive a reduced-model polynomial equation to predict the Y1, Y2 and Y3 for optimized moxifloxacin in situ gelled nanosuspension. Results: Desirability plots showed the effects of X1, X2, and X3 on Y1, Y2 and Y3, respectively. The design space is generated to obtain optimized process parameters viz. chiller temperature (-5°C), HPH pressure 800 – 900 bar and 8 cycles that resulted in nanosuspension with ≈ 500 nm size, encapsulation efficiency >65% and final formulation temperature <23°C that were necessary to maintain the formulation in a liquid state. Conclusion: Quality by Design (QbD) approach is recently been encouraged by regulatory bodies to improve the quality of the finished product. This approach proved to be a useful tool in the development of robust nanosuspension of highly hydrophilic drugs with improved efficiency. Results indicate that such hybrid gel systems can be used to control the release of SLNs from application site and prolong their action in a sustained manner.


Sign in / Sign up

Export Citation Format

Share Document