scholarly journals Data on energy consumption and Nearly zero energy buildings (NZEBs) in Europe

Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 2470-2474 ◽  
Author(s):  
Delia D'Agostino ◽  
Livio Mazzarella
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3252 ◽  
Author(s):  
Xiaolong Xu ◽  
Guohui Feng ◽  
Dandan Chi ◽  
Ming Liu ◽  
Baoyue Dou

Optimizing key parameters with energy consumption as the control target can minimize the heating and cooling needs of buildings. In this paper we focus on the optimization of performance parameters design and the prediction of energy consumption for nearly Zero Energy Buildings (nZEB). The optimal combination of various performance parameters and the Energy Saving Ratio (ESR)are studied by using a large volume of simulation data. Artificial neural networks (ANNs) are applied for the prediction of annual electrical energy consumption in a nearly Zero Energy Building designs located in Shenyang (China). The data of the energy demand for our test is obtained by using building simulation techniques. The results demonstrate that the heating energy demand for our test nearly Zero Energy Building is 17.42 KW·h/(m2·a). The Energy Saving Ratio of window-to-wall ratios optimization is the most obvious, followed by thermal performance parameters of the window, and finally the insulation thickness. The maximum relative error of building energy consumption prediction is 6.46% when using the artificial neural network model to predict energy consumption. The establishment of this prediction method enables architects to easily and accurately obtain the energy consumption of buildings during the design phase.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1727 ◽  
Author(s):  
Miklos Kassai ◽  
Laith Al-Hyari

The usage of energy recovery ventilation units was extended in European countries. Air-to-air heat and energy recovery is an effective procedure to reduce energy consumption of the ventilation air. However, the material of the core significantly influences the performance of the exchangers, which is becoming an extremely important aspect to meet the energy requirements of nearly zero-energy buildings. In this study, the performance of two counter-flow heat/enthalpy energy exchangers are experimentally tested under different operating conditions, and the values of the sensible, latent, and total effectiveness are presented. Moreover, the effects of the material of two exchangers (polystyrene for the sensible heat exchanger and polymer membrane for the energy exchanger) on the energy consumption of ventilation in European cities with three different climates (in Reykjavík in Iceland as a cold climate, in Budapest in Hungary as a temperate climate, and in Rome in Italy as a warm climate) are evaluated. The results show that the energy recovery of ventilation air with a polymer membrane material-based counter-flow energy exchanger performs better than using a polystyrene sensible heat recovery unit.


2014 ◽  
Vol 587-589 ◽  
pp. 224-227
Author(s):  
Zhi Jun Zhang

A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called “energy-plus buildings” and buildings that consume slightly more energy than they produce are called “near-zero energy buildings” or “ultra-low energy houses”. Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases. The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.


2019 ◽  
Vol 11 (24) ◽  
pp. 7032 ◽  
Author(s):  
Ji Li ◽  
Wei Xu ◽  
Ping Cui ◽  
Biao Qiao ◽  
Siyang Wu ◽  
...  

As a result of the impact of energy consumption, research on ultra-low energy, nearly zero-energy, and zero energy buildings has been conducted in China. However, the design of the nearly zero-energy building is flexible; the traditional architectural design method is not fully applicable to nearly zero-energy buildings. The paper proposed a performance-based design method based on overall energy consumption and progress for the nearly zero-energy building. The design process of the relevant cases was also analyzed. The factors of cold and heat sources, environment, and renewable energy were combined to make a comprehensive analysis to get the optimal scheme of the nearly zero-energy building in the case. In general, the performance-based design method has a certain guiding significance for the design of nearly zero-energy buildings and certainly promotes the expansion of the nearly zero-energy building industry in China.


2013 ◽  
Vol 649 ◽  
pp. 7-10 ◽  
Author(s):  
Mária Budiaková

The paper is oriented on the design of energy concepts of zero energy buildings. In the first phase of concept is important the good architectural design in terms of energy. In the residential building for four flats I calculated the annual energy consumption by computer simulation in the current condition and in the proposed reconstruction. I demonstrate that the unbalanced architectural design of flats in a residential building causes also after reconstruction a significant difference in energy consumption. This means that when developing energy concept of zero energy building the first essential step is energy efficient architectural design, taking into an account the energy aspects. The next step is to the use of technological aspects: passive and active use of solar gains, effective ventilation systems with heat recovery and new generation of heat pumps. For the formation of zero energy buildings is essential application of described progressive trends in the development of energy concepts.


Author(s):  
Paris A. Fokaides

In 2009, European Union (EU) member states forged a long-awaited compromise on the recast buildings directive, agreeing that all new buildings would have to comply with high energy-performance standards by the end of 2020. The recast Energy Performance of Buildings Directive, which was finally announced in May 2010, requires the public sector to take the lead by owning buildings with “nearly zero” energy consumption standards by the end of 2018, which is two years in advance of the private sector. The objective of this chapter is to discuss both the range of potential consequences to European cities resulting from widespread implementation of zero energy buildings (ZEBs) and the relevant environmental technologies in accordance with the national goals set by the EU Member States. As EU member states are moving ahead with their targets and strategies for ZEBs, this chapter presents the most possible scenarios for the implementation of the EU recast buildings directive regarding ZEBs by 2020. A detailed review regarding the existing EU member states’ definitions and policies on low energy buildings and ZEBs, and the current status of RES technologies for ZEBs is also presented. Finally, some first thoughts are provided regarding the minimisation of energy consumption in the building sector and the green city goal, as energy is considered to be one of the most important chapters when evaluating a green community. The next step for the integration of green buildings would be the adoption of principles resulting from ZEB analyses and descriptions in existing green building models.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Mohsen Mahdavi Adeli ◽  
Said Farahat ◽  
Faramarz Sarhaddi

Residential and commercial buildings consume approximately 60% of the world’s electricity. It is almost impossible to provide a general definition of thermal comfort, because the feeling of thermal comfort is affected by varying preferences and specific traits of the population living in different climate zones. Considering that no studies have been conducted on thermal satisfaction of net-zero energy buildings prior to this date, one of the objectives of the present study is to draw a comparison between the thermal parameters for evaluation of thermal comfort of a net-zero energy building occupants. In so doing, the given building for this study is first optimized for the target parameters of thermal comfort and energy consumption, and, hence, a net-zero energy building is formed. Subsequent to obtaining the acceptable thermal comfort range, the computational analyses required to determine the temperature for thermal comfort are carried out using the Computational Fluid Dynamics (CFD) model. The findings of this study demonstrate that to reach net-zero energy buildings, solar energy alone is not able to supply the energy consumption of buildings and other types of energy should also be used. Furthermore, it is observed that optimum thermal comfort is achieved in moderate seasons.


2020 ◽  
Vol 4 (1) ◽  
pp. 73
Author(s):  
Asep Yudi Permana ◽  
Karto Wijaya ◽  
Hafiz Nurrahman ◽  
Aathira Farah Salsabilla Permana

Abstract: Energy efficiency is a top priority in design, because design errors that result in wasteful energy will impact operational costs as long as the building operates. The opening protection in the facade should be adjusted according to their needs, for optimum use of sky light. Inhibiting the entry of solar heat into the room through the process of radiation, conduction or convection, optimum use of sky light and efforts to use building skin elements for shading are very wise efforts for energy savings. House construction planning must be careful and consider many things, including: physical potential. Physical potential is a consideration of building materials, geological conditions and local climate. Related to the issue of global warming that occurs in modern times, climate is a major consideration that needs to be resolved.The purpose of building design, especially in residential homes aims to create amenities for its inhabitants. Amenities are achieved through physical comfort, be it spatial comfort, thermal comfort, auditory comfort, or visual comfort.Energy waste is also caused by building designs that are not well integrated and even wrong and are not responsive to aspects of function, and climate. This is worsened by the tendency of the designers to prioritize aesthetic aspects (prevailing trends). The issue of green concepts and energy consumption efficiency through the Net Zero-Energy Buildings (NZE-Bs) program from the housing sector as a response to tackling global warming is already familiar in Indonesia, although its application has not yet been found significantly. Green concepts offered by housing developers are often merely marketing tricks and are not realized and grow the responsibility of the residents to look after them. Due to the lack of understanding of the green concept, housing developers tend to offer more a beautiful and green housing environment, not the actual green concept.Keyword: Socio-culture, Energy efficiency, Energy consumption, Environment. The green conceptAbstrak: Efisiensi energi merupakan prioritas utama dalam disain, karena kesalahan disain yang berakibat boros energi akan berdampak terhadap biaya opersional sepanjang bangunan tersebut beroperasi. Pelindung bukaan pada fasade sebaiknya dapat diatur sesuai kebutuhannya, untuk pemanfaatan terang langit seoptimal mungkin. Penghambatan masuknya panas matahari kedalam ruangan baik melalui proses radiasi, konduksi atau konveksi, pemanfaatan terang langit seoptimal mungkin serta upaya pemanfaatan elemen kulit bangunan untuk pembayangan merupakan upaya yang sangat bijaksana bagi penghematan energi. Perencanaan pembangunan rumah harus cermat dan mempertimbangkan banyak hal, antara lain: potensi fisik. Potensi fisik adalah pertimbangan akan bahan bangunan, kondisi geologis dan iklim setempat. Terkait dengan isu pemanasan global yang terjadi pada masa modern ini, iklim menjadi sebuah pertimbangan utama yang perlu diselesaikan.Tujuan desain bangunan khususnya pada rumah tinggal bertujuan menciptakan amenities bagi penghuninya. Amenities dicapai melalui kenyamanan fisik, baik itu spatial comfort, thermal comfort, auditory comfort, maupun visual comfort.Pemborosan energi juga disebabkan oleh desain bangunan yang tidak terintegrasi dengan baik bahkan salah dan tidak tanggap terhadap aspek fungsi, serta iklim. Hal tersebut diperparah yang kecenderungan para perancang lebih mementingkan aspek estetis (tren yang berlaku). Isu konsep hijau dan efisiensi konsumsi energi melalui program Net Zero-Energy Buildings (NZE-Bs) dari sektor perumahan sebagai respon untuk menanggulangi pemanasan global sudah tidak asing di Indonesia, walaupun penerapannya masih belum dapat ditemukan secara signifikan. Konsep hijau yang ditawarkan oleh pengembang perumahan seringkali hanya sebagai trik pemasaran belaka dan tidak diwujudkan serta ditumbuhkan tanggung jawab para penghuni untuk menjaganya. Akibat minimnya pemahaman mengenai konsep hijau tersebut, para pengembang perumahan cenderung lebih banyak menawarkan lingkungan perumahan yang asri dan hijau, bukan konsep hijau yang sebenarnya.Kata Kunci: Sosio-kultur, Efisiensi Energi, Konsumsi energi, Lingkungan, Konsep Hijau


Author(s):  
Bharat Raj Singh ◽  
Manoj Kumar Singh

The recast of the European Directive 2010/31/EU establishes that starting from the end of 2020, all new buildings will have to be Nearly Zero Energy Buildings According to this directive, 'Nearly ZEB' means a building that has a very low energy yearly energy consumption, which can be achieved by both the highest energy efficiency and by energy from renewable sources, A relevant international effort on the subject of the Net Net ZEBs-Net ZEB meaning that the buildings are connected to an energy infrastructure-is ongoing in the International Energy Agency (IEA), joint Solar Heating and Cooling (SHC) Task 40 and Energy Conservation in Buildings and Community Systems. Net Zero Energy Solar Buildings' both from the theoretical and practical points of view, this new 'energy paradigm'-or the Net ZEB) balance- might be a revolution for architecture and for Photovoltaic's (PV), too.The engineering only research taking into account mainly the energy aspects seems to be not sufficient to ensure the diffusion of ZEB models: in achieving the ZEB target, a major role will be played by architects and designers, who are amongst the main actors of this revolutionary change. More precisely, because the form of our buildings and cities might change radically because of this new energy requirement, the way architects will take up the challenge of designing ZEBs is crucial, as architects are highly responsible of the form of the city and of its symbolic meanings.In a near future, buildings will be designed to need very little energy (passive design strategies for energy efficiency) and to integrate active surfaces (i.e. PV modules) for generating energy. In the future, design has to consider not only the space we use directly but also the space required to provide for electrical and thermal energies from renewable sources: the surface necessary for placing the energy generation devices. This area can be defined as the 'building's energy footprint' . Because the renewable energy generation systems, in contrast to conventional Energy sources, are visible, for the first time in the tradition of architecture, energy can take a 'form' (i.e. shape, colors and features of a PV generator), and architects are responsible for designing this form(s). Photovoltaic's has many potentialities in a ZEB scenario, thanks to its features and enormous decrease in cost. Because of the high energy consumption of the European countries, PV can contribute significantly to the reduction of the primary, conventional energy supply, as well as to the reduction of the CO2 emissions PV seems to be technically the easiest way to obtain the zero energy balance, as the recent, sharp, drop in prices makes it competitive even with active solar thermal collectors and building materials in general.Photovoltaics is able to generate electric energy from the direct conversion of the sunlight; it can power any kind of energy request of the building (thermal and electrical), with the consequence that a ZEB could be theoretically entirely powered by Photovoltaic.


Sign in / Sign up

Export Citation Format

Share Document