Adipose tissue depots of Holstein cows are immune responsive: Inflammatory gene expression in vitro

2010 ◽  
Vol 38 (3) ◽  
pp. 168-178 ◽  
Author(s):  
M. Mukesh ◽  
M. Bionaz ◽  
D.E. Graugnard ◽  
J.K. Drackley ◽  
J.J. Loor
2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi262-vi262
Author(s):  
Bozena Kaminska ◽  
Marta Maleszewska ◽  
Aleksandra Steranka ◽  
Magdalena Smiech ◽  
Beata Kaza ◽  
...  

2016 ◽  
Vol 252 ◽  
pp. e174 ◽  
Author(s):  
S. Čejková ◽  
I. Králová Lesná ◽  
J. Froněk ◽  
A. Králová ◽  
R. Poledne

2017 ◽  
Vol 117 (02) ◽  
pp. 325-338 ◽  
Author(s):  
Dennis Wolf ◽  
Nora Bukosza ◽  
David Engel ◽  
Marjorie Poggi ◽  
Felix Jehle ◽  
...  

SummaryCell accumulation is a prerequisite for adipose tissue inflammation. The leukocyte integrin Mac-1 (CD11b/CD18, αMβ2) is a classic adhesion receptor critically regulating inflammatory cell recruitment. Here, we tested the hypothesis that a genetic deficiency and a therapeutic modulation of Mac-1 regulate adipose tissue inflammation in a mouse model of diet-induced obesity (DIO). C57Bl6/J mice genetically deficient (Mac-1-/-) or competent for Mac-1 (WT) consumed a high fat diet for 20 weeks. Surprisingly, Mac-1-/- mice presented with increased diet-induced weight gain, decreased insulin sensitivity in skeletal muscle and in the liver in insulin-clamps, insulin secretion deficiency and elevated glucose levels in fasting animals, and dyslipidaemia. Unexpectedly, accumulation of adipose tissue macrophages (ATMs) was unaffected, while gene expression indicated less inflamed adipose tissue and macrophages in Mac-1-/- mice. In contrast, inflammatory gene expression at distant locations, such as in skeletal muscle, was not changed. Treatment of ATMs with an agonistic anti-Mac-1 antibody, M1/70, induced pro-inflammatory genes in cell culture. In vivo, treatment with M1/70 induced a hyper-inflammatory phenotype with increased expression of IL-6 and MCP-1, whereas accumulation of ATMs did not change. Finally, inhibition of Mac-1’s adhesive interaction to CD40L by the peptide inhibitor cM7 did not affect myeloid cell accumulation in adipose tissue. We present the surprising finding that adhesive properties of the leukocyte integrin Mac-1 are not required for macrophage accumulation in adipose tissue. Instead, Mac-1 modulates inflammatory gene expression in macrophages. These findings question the net effect of integrin blockade in cardio-metabolic disease.D. W., N. B., and D. E. equally contributed to this work.K. P., E. L., and A. Z. share senior authorship.Note: The review process for this manuscript was fully handled by Gregory Y. H. Lip, Editor in Chief.Supplementary Material to this article is available online at www.thrombosis-online.com.


2020 ◽  
Vol 14 ◽  
Author(s):  
Elizabeth A. Kiernan ◽  
Andrea C. Ewald ◽  
Jonathan N. Ouellette ◽  
Tao Wang ◽  
Abiye Agbeh ◽  
...  

2021 ◽  
Vol 85 (5) ◽  
pp. 1215-1226
Author(s):  
Shiori Ishiyama ◽  
Mayu Kimura ◽  
Nodoka Umihira ◽  
Sachi Matsumoto ◽  
Atsushi Takahashi ◽  
...  

ABSTRACT We examined whether peripheral leukocytes of mice derived from in vitro αMEM-cultured embryos and exhibiting type 2 diabetes had higher expression of inflammatory-related genes associated with the development of atherosclerosis. Also, we examined the impact of a barley diet on inflammatory gene expression. Adult mice were produced by embryo transfer, after culturing two-cell embryos for 48 h in either α minimal essential media (α-MEM) or potassium simplex optimized medium control media. Mice were fed either a barley or rice diet for 10 weeks. Postprandial blood glucose and mRNA levels of several inflammatory genes, including Tnfa and Nox2, in blood leukocytes were significantly higher in MEM mice fed a rice diet compared with control mice. Barley intake reduced expression of S100a8 and Nox2. In summary, MEM mice exhibited postprandial hyperglycemia and peripheral leukocytes with higher expression of genes related to the development of atherosclerosis, and barley intake reduced some gene expression.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3396-3396
Author(s):  
Julia Brittain ◽  
Itia Lee ◽  
Ciprian Anea

Abstract Background: Patients with SCD tolerate a systemic pro-inflammatory vascular milieu created by chronic ischemia/reperfusion injury and profound erythrocyte hemolysis. In addition to this chronic low level inflammation, exposure to relatively innocuous, sub-clinical inflammatory stimuli appears to ignite an exaggerated, potentially fatal inflammatory response in patients. The etiology of this inflammatory hyper-reactivity is not well understood. There is ample evidence that, in steady state, a cadre of inflammatory cells, especially monocytes, exhibit a primed phenotype. Such priming, or propensity to activate, likely contributes to baseline inflammation, and is requisite for the inflated inflammatory response. Monocytes are quite unique amongst the leukocytes in that their inflammatory potential, including Il-6 release, is governed by the mammalian circadian clock. A role for the rhythmic oscillation of clock proteins as a controller of inflammation in SCD has never been demonstrated. However, a binding partner for heme, the nuclear receptor rev-erbα, is implicated as a regulator of clock controlled genes. Objective: To test the hypothesis that hemolysis, via heme-induced perturbation of the clock protein Rev-erbα, forms the basis for an enhanced inflammatory response in the monocyte. Methods: Intraperitoneal low dose lipopolysaccharide (LPS) was used to elicit an inflammatory response in the Townes mouse model of SCD. Plasma from the mice was acquired 6 hours after LPS injection. Analysis of 25 cytokines was accomplished using luminex methods. Monocytes were modeled in vitro using THP-1 cells. Simultaneous analysis of 84 induced inflammatory genes was conducted via qRT-PCR using the Qiagen RT Profiler PCR array. Inflammatory cytokine levels in cell supernatants were determined via ELISA. Results: We challenged the mice with low dose LPS (<10ng). Interrogation of the inflammatory cytokines in these mice revealed no change in any cytokine tested in the AA mice, but 20 out of 25 inflammatory cytokines were upregulated in mice with the SS genotype. The monocyte-based cytokines were clearly target of LPS activation in the SS mice. TNF-α and Il-1β were both upregulated 20 fold and 80 fold respectively in the SS mice. KC levels (the murine equivalent of Il-8) levels were increased 80 fold in the SS mice treated with LPS. Il-6 levels, however, were the most pronounced with a 40,000 fold increase over PBS injected SS mice. We then evaluated the role of hemolysis on monocyte inflammatory potential in vitro. Sustained monocyte exposure to physiological levels of heme in SCD alone could induce a low level of inflammatory gene expression and Il-6 release. However, sustained exposure to heme dramatically increased Il-6 release from the monocyte in response to LPS. Expression of the Il-6 gene was also increased, but the peak gene expression was time delayed compared to LPS treatment alone. In fact, we noted this phase shifting of inflammatory gene expression in the heme primed cells. LPS induced the release of significantly more TNF-α and Il-1β into the culture media in the presence of heme - consistent with the notion of heme setting a hyperactive threshold in response to LPS. We also noted that heme induced expression of the clock gene rev-erbα, and that antagonizing the activity of rev-erbα ablated the enhanced inflammatory response induced by LPS in the heme primed cells. Conclusion: These data provide evidence that hemolysis may play an important role in the hyper-inflammatory monocyte response via heme- induced dysregulation of the circadian clock. These novel observations provide entirely new avenues of anti-inflammatory therapy in SCD. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document