scholarly journals Acute effects of intravenous cocaine administration on serum concentrations of ghrelin, amylin, glucagon-like peptide-1, insulin, leptin and peptide YY and relationships with cardiorespiratory and subjective responses

2017 ◽  
Vol 180 ◽  
pp. 68-75 ◽  
Author(s):  
Sofia Bouhlal ◽  
Kayla N. Ellefsen ◽  
Mikela B. Sheskier ◽  
Erick Singley ◽  
Sandrine Pirard ◽  
...  
2019 ◽  
Vol 316 (5) ◽  
pp. G574-G584 ◽  
Author(s):  
Charlotte Bayer Christiansen ◽  
Samuel Addison Jack Trammell ◽  
Nicolai Jacob Wewer Albrechtsen ◽  
Kristina Schoonjans ◽  
Reidar Albrechtsen ◽  
...  

A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion.NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.


2000 ◽  
Vol 279 (5) ◽  
pp. G925-G930 ◽  
Author(s):  
G. Cuche ◽  
J. C. Cuber ◽  
C. H. Malbert

The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 ± 1.2 vs. 49 ± 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 ± 0.11 vs. 1.3 ± 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 ± 1.0 and 34 ± 0.8 vs. 47 ± 1.3 and 43 ± 1.2%; frequency, 1.4 ± 0.07 and 1.6 ± 0.06 vs. 1.1 ± 0.14 and 1.0 ± 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.


2018 ◽  
Vol 28 (6) ◽  
pp. 602-610
Author(s):  
Linn Bøhler ◽  
Sílvia Ribeiro Coutinho ◽  
Jens F. Rehfeld ◽  
Linda Morgan ◽  
Catia Martins

Active, as opposed to inactive, individuals are able to adjust their energy intake after preloads of different energy contents. The mechanisms responsible for this remain unknown. This study examined differences in plasma concentration of appetite-related hormones in response to breakfasts of different energy contents, between active and inactive men. Sixteen healthy nonobese (body mass index = 18.5–27 kg/m2) adult males (nine active and seven inactive) participated in this study. Participants were given a high-energy (570 kcal) or a low-energy (205 kcal) breakfast in a random order. Subjective feelings of appetite and plasma concentrations of active ghrelin, active glucagon-like peptide-1, total peptide YY (PYY), cholecystokinin, and insulin were measured in fasting and every 30 min up to 2.5 hr, in response to both breakfasts. Mixed analysis of variance (fat mass [in percentage] as a covariate) revealed a higher concentration of active ghrelin and lower concentration of glucagon-like peptide-1, and cholecystokinin after the low-energy breakfast (p < .001 for all). Postprandial concentration of PYY was greater after the high energy compared with the low energy, but for inactive participants only (p = .014). Active participants had lower postprandial concentrations of insulin than inactive participants (p < .001). Differences in postprandial insulin between breakfasts were significantly lower in active compared with inactive participants (p < .001). Physical activity seems to modulate the postprandial plasma concentration of insulin and PYY after the intake of breakfasts of different energy contents, and that may contribute, at least partially, to the differences in short-term appetite control between active and inactive individuals.


2007 ◽  
Vol 85 (4) ◽  
pp. 967-971 ◽  
Author(s):  
Natacha Germain ◽  
Bogdan Galusca ◽  
Carel W Le Roux ◽  
Cecile Bossu ◽  
Mohammad A Ghatei ◽  
...  

2015 ◽  
Vol 113 (4) ◽  
pp. 574-584 ◽  
Author(s):  
H. Frances J. Bligh ◽  
Ian F. Godsland ◽  
Gary Frost ◽  
Karl J. Hunter ◽  
Peter Murray ◽  
...  

There is evidence for health benefits from ‘Palaeolithic’ diets; however, there are a few data on the acute effects of rationally designed Palaeolithic-type meals. In the present study, we used Palaeolithic diet principles to construct meals comprising readily available ingredients: fish and a variety of plants, selected to be rich in fibre and phyto-nutrients. We investigated the acute effects of two Palaeolithic-type meals (PAL 1 and PAL 2) and a reference meal based on WHO guidelines (REF), on blood glucose control, gut hormone responses and appetite regulation. Using a randomised cross-over trial design, healthy subjects were given three meals on separate occasions. PAL2 and REF were matched for energy, protein, fat and carbohydrates; PAL1 contained more protein and energy. Plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY) concentrations were measured over a period of 180 min. Satiation was assessed using electronic visual analogue scale (EVAS) scores. GLP-1 and PYY concentrations were significantly increased across 180 min for both PAL1 (P= 0·001 and P< 0·001) and PAL2 (P= 0·011 and P= 0·003) compared with the REF. Concomitant EVAS scores showed increased satiety. By contrast, GIP concentration was significantly suppressed. Positive incremental AUC over 120 min for glucose and insulin did not differ between the meals. Consumption of meals based on Palaeolithic diet principles resulted in significant increases in incretin and anorectic gut hormones and increased perceived satiety. Surprisingly, this was independent of the energy or protein content of the meal and therefore suggests potential benefits for reduced risk of obesity.


2016 ◽  
Vol 40 (11) ◽  
pp. 1699-1706 ◽  
Author(s):  
M S Svane ◽  
N B Jørgensen ◽  
K N Bojsen-Møller ◽  
C Dirksen ◽  
S Nielsen ◽  
...  

2012 ◽  
Vol 15 (5) ◽  
pp. 474-477 ◽  
Author(s):  
T. Wu ◽  
M. J. Bound ◽  
S. D. Standfield ◽  
B. Gedulin ◽  
K. L. Jones ◽  
...  

2001 ◽  
Vol 281 (3) ◽  
pp. G752-G763 ◽  
Author(s):  
Feruze Y. Enç ◽  
Neşe I˙meryüz ◽  
Levent Akin ◽  
Turgut Turoğlu ◽  
Fuat Dede ◽  
...  

We investigated the effect of acarbose, an α-glucosidase and pancreatic α-amylase inhibitor, on gastric emptying of solid meals of varying nutrient composition and plasma responses of gut hormones. Gastric emptying was determined with scintigraphy in healthy subjects, and all studies were performed with and without 100 mg of acarbose, in random order, at least 1 wk apart. Acarbose did not alter the emptying of a carbohydrate-free meal, but it delayed emptying of a mixed meal and a carbohydrate-free meal given 2 h after sucrose ingestion. In meal groups with carbohydrates, acarbose attenuated responses of plasma insulin and glucose-dependent insulinotropic polypeptide (GIP) while augmenting responses of CCK, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). With mixed meal + acarbose, area under the curve (AUC) of gastric emptying was positively correlated with integrated plasma response of GLP-1 ( r = 0.68 , P < 0.02). With the carbohydrate-free meal after sucrose and acarbose ingestion, AUC of gastric emptying was negatively correlated with integrated plasma response of GIP, implying that prior alteration of carbohydrate absorption modifies gastric emptying of a meal. The results demonstrate that acarbose delays gastric emptying of solid meals and augments release of CCK, GLP-1, and PYY mainly by retarding/inhibiting carbohydrate absorption. Augmented GLP-1 release by acarbose appears to play a major role in the inhibition of gastric emptying of a mixed meal, whereas CCK and PYY may have contributory roles.


Sign in / Sign up

Export Citation Format

Share Document