Achieving simultaneous biological nutrient removal and sludge minimization from marine ship sewage based on an innovative Landscape Integrated Ecological Treatment System (LIETS)

2020 ◽  
Vol 156 ◽  
pp. 105989
Author(s):  
Xingxing Zhang ◽  
Fahmi Bahtiar ◽  
Yao Wang ◽  
Lezhong Xu ◽  
Xinzhu Wang ◽  
...  
2009 ◽  
Vol 4 (1) ◽  
Author(s):  
E. Choi ◽  
Z. Yun ◽  
K.S. Min

In a densely populated area, a large wastewater treatment plant (WWTP) has been constructed in the underground. The plant is practically “invisible” to visitors and neighbours, and the ground level is used as a park and sport facilities in order to avoid the “not in my backyard” phenomenon. The WWTP has a 5-stage biological nutrient removal system utilizing the denitrifying PAO (dPAO) with a step feed in order to treat the weak sewage with higher nutrient removal requirement. Although the underground installation could be expected to increase plant operating temperature, the temperature increase was only 1°C. The polished final effluent from a sand filter produced average TN and TP concentrations of 5.11 mg/L and 0.91 mg/L, respectively with SS concentrations of 0.61 mg/L, indicating that the dPAO system combined with sand filter effectively produced a high quality effluent.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 281-289 ◽  
Author(s):  
Dick H. Eikelboom ◽  
Andreas Andreadakis ◽  
Kjaer Andreasen

A joint EU research project aimed at solving activated sludge bulking in nutrient removal plants was initiated in 1993. The project started with a survey of the size and composition of the filamentous population in nutrient removal plants in Denmark, Germany, Greece and the Netherlands. The results show that biological nutrient removal process conditions indeed favour filamentous microorganisms in their competition with floc forming organisms. An increase in the size of the filamentous population resulted in a deterioration of the settling properties of the biomass, except for plants with Bio-P removal conditions. It is assumed that in the latter case the dense clusters of Bio-P bacteria increase the weight of the flocs, and compensate for the effect of the larger number of filaments. Although exceptions frequently occur, the following sequence in decreasing filamentous organism population size was observed for the process conditions indicated: - completely mixed + simultaneous denitrification; - completely mixed + intermittent aeration/denitrification; - alternating anoxic/oxic process conditions, with an anaerobic tank for biological phosphate removal (Bio-Denipho); - alternating anoxic/oxic process conditions (Bio-Denitro); - predenitrification The surveys provided little information about the effect of nutrient removal in plants with plug flow aeration basins. Simultaneous precipitation with aluminium salts nearly always resulted in a low number of filaments and a good settling sludge. The size of the filamentous organism population showed a seasonal pattern with a maximum in winter/early spring and a minimum during summer (in Greece: during autumn). This seasonal variation is primarily caused by the effect of the season on the population sizes of M. parvicella, N. limicola and Type 0092. M. parvicella is by far the most important filamentous species in nutrient removal plants. In Denmark only, Type 0041 also frequently dominates the filamentous population, but seldom causes severe bulking. Considering their frequency of occurrence, approx. 10 other filamentous micro-organisms are of minor importance. Growth of some of these species, viz. those which use soluble substrate, can be prevented by the introduction of Bio-P process conditions. M. parvicella and Type 0041 (and probably also Actinomycetes and the Types 1851 and 0092) seem to compete for the same substrates i.e. the influent particulate fraction. Most of the differences in composition of the filamentous microorganism population can be explained by whether or not premixing of influent and recycled sludge is used. In general, premixing for a short period of time followed by anoxic conditions favours Type 0041. M. parvicella seems to proliferate if the particulate fraction is first hydrolysed or if it enters the plant via an oxic zone. It is concluded that bulking in nutrient removal plants is mainly caused by filamentous species requiring the particulate fraction for their growth.


1998 ◽  
Vol 38 (1) ◽  
pp. 327-334 ◽  
Author(s):  
P. Pavan ◽  
P. Battistoni ◽  
P. Traverso ◽  
A. Musacco ◽  
F. Cecchi

The paper presents results coming from experiments on pilot scale plants about the possibility to integrate the organic waste and wastewater treatment cycles, using the light organic fraction produced via anaerobic fermentation of OFMSW as RBCOD source for BNR processes. The effluent from the anaerobic fermentation process, with an average content of 20 g/l of VFA+ lactic acid was added to wastewater to be treated in order to increase RBCOD content of about 60-70 mg/l. The results obtained in the BNR process through the addition of the effluent from the fermentation unit are presented. Significant increase of denitrification rate was obtained: 0.06 KgN-NO3/KgVSS d were denitrified in the best operative conditions studied. -Vmax shows values close to those typical of the pure methanol addition (about 0.3 KgN-NO3/KgVSS d). A considerable P release (35%) was observed in the anaerobic step of the BNR process, even if not yet a completely developed P removal process.


1997 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Vibeke R. Borregaard

In the upgrade of wastewater treatment plants to include biological nutrient removal the space available is often a limiting facor. It may be difficult to use conventional suspended growth processes (i.e. activated sludge) owing to the relatively large surface area required for these processes. Recent years have therefore seen a revived interest in treatment technologies using various types of attached growth processes. The “new” attached growth processes, like the Biostyr process, utilise various kinds of manufactured media, e.g. polystyrene granules, which offer a high specific surface area, and are therefore very compact. The Biostyr plants allow a combination of nitrification-denitrification and filtration in one and the same unit. The results obtained are 8 mg total N/l and an SS content normally below 10 mg/l. The plants in Denmark which have been extended with a Biostyr unit have various levels of PLC control and on-line instrumentation.


Sign in / Sign up

Export Citation Format

Share Document