Effects of wind turbines on spatial distribution of the European hamster

2018 ◽  
Vol 84 ◽  
pp. 433-436 ◽  
Author(s):  
Rafał Łopucki ◽  
Kajetan Perzanowski
Author(s):  
Valeria-Alina ANDRONESCU ◽  
Elena-Corina CIPU

Taking into account the recent interest in producing green energy through wind turbines, this paper aims to reconsider other options regarding different distributions in order to increase the production efficiency. Also, this paper analyses the hypothesis of Romania using only wind turbines to provide the energy needed to sustain the system, which at first may seem a bold idea, but pollution has become such a heated debate issue nowadays that it cannot be ignored anymore


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1103 ◽  
Author(s):  
Bech-Hansen ◽  
Kallehauge ◽  
Bruhn ◽  
Castenschiold ◽  
Gehrlein ◽  
...  

Behavioural instability is a newly coined term used for measuring asymmetry of bilateral behavioural traits as indicators of genetic or environmental stress. However, this concept might also be useful for other types of data than bilateral traits. In this study, behavioural instability indices of expected behaviour were evaluated as an indicator for environmental stress through the application of aerial photos of foraging flocks of geese. It was presumed that geese would increase anti-predator behaviour through the dilution effect when foraging near the following landscape elements: wind turbines, hedgerows, and roads. On this presumption, it was hypothesized that behavioural instability of spatial distribution in flocks of geese could be used as indicators of environmental stress. Asymmetry in spatial distribution was measured for difference in flock density across various distances to disturbing landscape elements through the following indices; behavioural instability of symmetry and behavioural instability of variance. The behavioural instability indices showed clear tendencies for changes in flock density and variance of flock density for geese foraging near wind turbines, hedgerows, and roads indicating increasing environmental stress levels. Thus, behavioural instability has proven to be a useful tool for monitoring environmental stress that does not need bilateral traits to estimate instability but can be applied for indices of expected behaviour.


Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 29 ◽  
Author(s):  
Marcus Eichhorn ◽  
Mattes Scheftelowitz ◽  
Matthias Reichmuth ◽  
Christian Lorenz ◽  
Kyriakos Louca ◽  
...  

The expansion of renewable energy technologies, accompanied by an increasingly decentralized supply structure, raises many research questions regarding the structure, dimension, and impacts of the electricity supply network. In this context, information on renewable energy plants, particularly their spatial distribution and key parameters—e.g., installed capacity, total size, and required space—are more and more important for public decision makers and different scientific domains, such as energy system analysis and impact assessment. The dataset described in this paper covers the spatial distribution, installed capacity, and commissioning year of wind turbines, photovoltaic field systems, and bio- and river hydro power plants in Germany. Collected from different online sources and authorities, the data have been thoroughly cross-checked, cleaned, and merged to generate validated and complete datasets. The paper concludes with notes on the practical use of the dataset in an environmental impact monitoring framework and other potential research or policy settings.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Philip Gauglitz ◽  
Sven Schicketanz ◽  
Carsten Pape

Abstract Background Germany has set ambitious goals for the reduction of greenhouse gases. The decarbonisation of the energy system has been in focus. An important means to achieve this is the increased utilisation of wind energy. The growth of wind power entails changes not only in the electrical system but also in the landscape and environment. Prospectively, scenarios will have to consider a wide range of aspects, not only economics and technology but also nature conservation and social affairs. The authors are participating in the research study “Szenarien für den Ausbau der erneuerbaren Energien aus Naturschutzsicht”, funded by the Federal Agency for Nature Conservation, which examines the possibilities of integrating nature conservation into the development of scenarios. Methods For aspects of nature conservation to be taken into account in scenario development, a multi-stage methodology has been developed to assess the conflict risk of wind energy and nature conservation throughout Germany. To ensure comparability of the scenarios, all of them are based on the same general framework consisting of fixed excluded areas, the same method of detail allocation and the same overall expected energy output. The “nature conservation” driver is integrated in the form of a nationwide comparative assessment of risk levels. The mapping of spatially differentiated risk levels for wind energy has been achieved in a GIS-based and discursive process. Results The results show that nature conservation can be addressed properly in scenario-building. Here, the method of multi-criterion scenario-building itself, with its focus on including nature conservation as one of several drivers determining the spatial distribution of wind turbines, is a major result. The authors have developed specific scenarios that mainly address questions of landscape and nature conservation. Out of the four generic scenarios presented for the year 2035, two have nature conservation as their main driver, whereas the other two consider energy-economic drivers only. Examining these scenarios provides insight into the influence of each driver. For example, adding nature conservation as the main driver (highest priority) reduces the specific conflict risk by 26.1%, while at the same time only a relatively small increase in wind turbines is required (+12.5% in numbers, +2.3% in installed power capacity). Conclusion The methods developed here provide a driver for allocating wind power plants to reduce conflicts in high-risk areas. Furthermore, using the same spatial distribution of risk levels makes it possible to subsequently rate the scenarios from a conservation perspective. The method developed here provides the means to analyse trade-offs between relevant drivers. The “nature conservation” scenarios show a relatively small additional demand for wind turbines but a greater amount of avoided conflict risk.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document