scholarly journals A Neural Network Post-processing Approach to Improving NWP Solar Radiation Forecasts

2014 ◽  
Vol 57 ◽  
pp. 1044-1052 ◽  
Author(s):  
Philippe Lauret ◽  
Maïmouna Diagne ◽  
Mathieu David
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom Struck ◽  
Javed Lindner ◽  
Arne Hollmann ◽  
Floyd Schauer ◽  
Andreas Schmidbauer ◽  
...  

AbstractEstablishing low-error and fast detection methods for qubit readout is crucial for efficient quantum error correction. Here, we test neural networks to classify a collection of single-shot spin detection events, which are the readout signal of our qubit measurements. This readout signal contains a stochastic peak, for which a Bayesian inference filter including Gaussian noise is theoretically optimal. Hence, we benchmark our neural networks trained by various strategies versus this latter algorithm. Training of the network with 106 experimentally recorded single-shot readout traces does not improve the post-processing performance. A network trained by synthetically generated measurement traces performs similar in terms of the detection error and the post-processing speed compared to the Bayesian inference filter. This neural network turns out to be more robust to fluctuations in the signal offset, length and delay as well as in the signal-to-noise ratio. Notably, we find an increase of 7% in the visibility of the Rabi oscillation when we employ a network trained by synthetic readout traces combined with measured signal noise of our setup. Our contribution thus represents an example of the beneficial role which software and hardware implementation of neural networks may play in scalable spin qubit processor architectures.


2021 ◽  
Vol 11 (9) ◽  
pp. 4292
Author(s):  
Mónica Y. Moreno-Revelo ◽  
Lorena Guachi-Guachi ◽  
Juan Bernardo Gómez-Mendoza ◽  
Javier Revelo-Fuelagán ◽  
Diego H. Peluffo-Ordóñez

Automatic crop identification and monitoring is a key element in enhancing food production processes as well as diminishing the related environmental impact. Although several efficient deep learning techniques have emerged in the field of multispectral imagery analysis, the crop classification problem still needs more accurate solutions. This work introduces a competitive methodology for crop classification from multispectral satellite imagery mainly using an enhanced 2D convolutional neural network (2D-CNN) designed at a smaller-scale architecture, as well as a novel post-processing step. The proposed methodology contains four steps: image stacking, patch extraction, classification model design (based on a 2D-CNN architecture), and post-processing. First, the images are stacked to increase the number of features. Second, the input images are split into patches and fed into the 2D-CNN model. Then, the 2D-CNN model is constructed within a small-scale framework, and properly trained to recognize 10 different types of crops. Finally, a post-processing step is performed in order to reduce the classification error caused by lower-spatial-resolution images. Experiments were carried over the so-named Campo Verde database, which consists of a set of satellite images captured by Landsat and Sentinel satellites from the municipality of Campo Verde, Brazil. In contrast to the maximum accuracy values reached by remarkable works reported in the literature (amounting to an overall accuracy of about 81%, a f1 score of 75.89%, and average accuracy of 73.35%), the proposed methodology achieves a competitive overall accuracy of 81.20%, a f1 score of 75.89%, and an average accuracy of 88.72% when classifying 10 different crops, while ensuring an adequate trade-off between the number of multiply-accumulate operations (MACs) and accuracy. Furthermore, given its ability to effectively classify patches from two image sequences, this methodology may result appealing for other real-world applications, such as the classification of urban materials.


2001 ◽  
Author(s):  
B. M. Fichera ◽  
R. L. Mahajan ◽  
T. W. Horst

Abstract Accurate air temperature measurements made by surface meteorological stations are demanded by climate research programs for various uses. Heating of the temperature sensor due to inadequate coupling with the environment can lead to significant errors. Therefore, accurate in-situ temperature measurements require shielding the sensor from exposure to direct and reflected solar radiation, while also allowing the sensor to be brought into contact with atmospheric air at the ambient temperature. The difficulty in designing a radiation shield for such a temperature sensor lies in satisfying these two conditions simultaneously. In this paper, we perform a computational fluid dynamics analysis of mechanically aspirated radiation shields (MARS) to study the effect of geometry, wind speed, and interplay of multiple heat transfer processes. Finally, an artificial neural network model is developed to learn the relationship between the temperature error and specified input variables. The model is then used to perform a sensitivity analysis and design optimization.


2018 ◽  
Vol 10 (4) ◽  
pp. 140-155 ◽  
Author(s):  
Lu Liu ◽  
Yao Zhao ◽  
Rongrong Ni ◽  
Qi Tian

This article describes how images could be forged using different techniques, and the most common forgery is copy-move forgery, in which a part of an image is duplicated and placed elsewhere in the same image. This article describes a convolutional neural network (CNN)-based method to accurately localize the tampered regions, which combines color filter array (CFA) features. The CFA interpolation algorithm introduces the correlation and consistency among the pixels, which can be easily destroyed by most image processing operations. The proposed CNN method can effectively distinguish the traces caused by copy-move forgeries and some post-processing operations. Additionally, it can utilize the classification result to guide the feature extraction, which can enhance the robustness of the learned features. This article, per the authors, tests the proposed method in several experiments. The results demonstrate the efficiency of the method on different forgeries and quantifies its robustness and sensitivity.


2020 ◽  
Author(s):  
Wei-Lei Wang ◽  
Guisheng Song ◽  
François Primeau ◽  
Eric S. Saltzman ◽  
Thomas G. Bell ◽  
...  

Abstract. Marine dimethyl sulfide (DMS) is important to climate due to the ability of DMS to alter Earth's radiation budget. However, a knowledge of the global-scale distribution, seasonal variability, and sea-to-air flux of DMS is needed in order to understand the factors controlling surface ocean DMS and its impact on climate. Here we examine the use of an artificial neural network (ANN) to extrapolate available DMS measurements to the global ocean and produce a global climatology with monthly temporal resolution. A global database of 57 810 ship-based DMS measurements in surface waters was used along with a suite of environmental parameters consisting of lat-lon coordinates, time-of-day, time-of-year, solar radiation, mixed layer depth, sea surface temperature, salinity, nitrate, phosphate, silicate, and oxygen. Linear regressions of DMS against the environmental parameters show that on a global scale mixed layer depth and solar radiation are the strongest predictors of DMS, however, they capture 14 % and 12 % of the raw DMS data variance, respectively. The multi-linear regression can capture more (∼29 %) of the raw data variance, but strongly underestimates high DMS concentrations. In contrast, the ANN captures ~61 % of the raw data variance in our database. Like prior climatologies our results show a strong seasonal cycle in DMS concentration and sea-to-air flux. The highest concentrations (fluxes) occur in the high-latitude oceans during the summer. We estimate a lower global sea-to-air DMS flux (17.90 ± 0.34 Tg S yr−1) than the prior estimate based on a map interpolation method when the same gas transfer velocity parameterization is used.


2020 ◽  
Author(s):  
Poomipat Boonyakitanont ◽  
Apiwat Lek-uthai ◽  
Jitkomut Songsiri

AbstractThis article aims to design an automatic detection algorithm of epileptic seizure onsets and offsets in scalp EEGs. A proposed scheme consists of two sequential steps: the detection of seizure episodes, and the determination of seizure onsets and offsets in long EEG recordings. We introduce a neural network-based model called ScoreNet as a post-processing technique to determine the seizure onsets and offsets in EEGs. A cost function called a log-dice loss that has an analogous meaning to F1 is proposed to handle an imbalanced data problem. In combination with several classifiers including random forest, CNN, and logistic regression, the ScoreNet is then verified on the CHB-MIT Scalp EEG database. As a result, in seizure detection, the ScoreNet can significantly improve F1 to 70.15% and can considerably reduce false positive rate per hour to 0.05 on average. In addition, we propose detection delay metric, an effective latency index as a summation of the exponential of delays, that includes undetected events into account. The index can provide a better insight into onset and offset detection than conventional time-based metrics.


2020 ◽  
Author(s):  
Florian Dupuy ◽  
Olivier Mestre ◽  
Léo Pfitzner

<p>Cloud cover is a crucial information for many applications such as planning land observation missions from space. However, cloud cover remains a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence justifying the use of statistical post-processing techniques. In our application, the ground truth is a gridded cloud cover product derived from satellite observations over Europe, and predictors are spatial fields of various variables produced by ARPEGE (Météo-France global NWP) at the corresponding lead time.</p><p>In this study, ARPEGE cloud cover is post-processed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows to integrate spatial information contained in NWP outputs. We show that a simple U-Net architecture produces significant improvements over Europe. Compared to the raw ARPEGE forecasts, MAE drops from 25.1 % to 17.8 % and RMSE decreases from 37.0 % to 31.6 %. Considering specific needs for earth observation, special interest was put on forecasts with low cloud cover conditions (< 10 %). For this particular nebulosity class, we show that hit rate jumps from 40.6 to 70.7 (which is the order of magnitude of what can be achieved using classical machine learning algorithms such as random forests) while false alarm decreases from 38.2 to 29.9. This is an excellent result, since improving hit rates by means of random forests usually also results in a slight increase of false alarms.</p>


Sign in / Sign up

Export Citation Format

Share Document