scholarly journals Study on the LNG distribution to Mobile Power Plants using a Small-Scale LNG Carrier for the case of the Sulawesi region of Indonesia

2022 ◽  
Vol 8 ◽  
pp. 374-380
Author(s):  
Muhammad Arif Budiyanto ◽  
Ivan Kristianto Singgih ◽  
Achmad Riadi ◽  
Gerry Liston Putra
Keyword(s):  
Author(s):  
Alex Frank ◽  
Peter Therkelsen ◽  
Miguel Sierra Aznar ◽  
Vi H. Rapp ◽  
Robert K. Cheng ◽  
...  

About 75% of the electric power generated by centralized power plants feeds the energy needs from the residential and commercial sectors. These power plants waste about 67% of primary energy as heat emitting 2 billion tons of CO2 per year in the process (∼ 38% of total US CO2 generated per year) [1]. A study conducted by the United States Department of Energy indicated that developing small-scale combined heat and power systems to serve the commercial and residential sectors could have a significant impact on both energy savings and CO2 emissions. However, systems of this scale historically suffer from low efficiencies for a variety of reasons. From a combustion perspective, at these small scales, few systems can achieve the balance between low emissions and high efficiencies due in part to the increasing sensitivity of the system to hydrodynamic and heat transfer effects. Addressing the hydrodynamic impact, the effects of downscaling on the flowfield evolution were studied on the low swirl burner (LSB) to understand if it could be adapted to systems at smaller scales. Utilizing particle image velocimetry (PIV), three different swirlers were studied ranging from 12 mm to 25.4 mm representing an output range of less than 1 kW to over 23 kW. Results have shown that the small-scale burners tested exhibited similar flowfield characteristics to their larger-scale counterparts in the non-reacting cases studied. Utilizing this data, as a proof of concept, a 14 mm diameter LSB with an output of 3.33 kW was developed for use in microturbine operating on a recuperated Brayton cycle. Emissions results from this burner proved the feasibility of the system at sufficiently lean mixtures. Furthermore, integration of the newly developed LSB into a can style combustor for a microturbine application was successfully completed and comfortably meet the stringent emissions targets. While the analysis of the non-reacting cases was successful, the reacting cases were less conclusive and further investigation is required to gain an understanding of the flowfield evolution which is the subject of future work.


2021 ◽  
Vol 69 (1) ◽  
pp. 25
Author(s):  
Binay Kumar Samanta ◽  
Manish Kumar Jain

Fossil fuel based thermal power or ovens not only exude greenhouse gases and pollutants but transfer enormous amount of waste heat up in air. Heat gets enveloped in the stratosphere and circulate around the earth; escalating global warming. France, Czech Republic, Slovakia, Austria, Andorra, Luxembourg, Poland and Germany made it the hottest June on record in 2019. Around 50 coke ovens around Dhanbad are losing and facing closure, with fate of employees doomed. Jharkhand State Pollution Control Board, Dhanbad had been issuing letters to the small-scale refractory and beehive hard coke-ovens to bring down stack gas emissions to below 150mg/Nm3 of suspended particulate matter (SPM), equivalent to the standards of large thermal power plants, deploying electrostatic precipitators (ESP). Some locally made pollution control devices were deployed, but these reduced the chimney draft and coking time increased. Installation of wet scrubbing methods would not be economic and slow down production. With experience as the Manager of a by-product coke oven, the chimney detour method with mechanical exhauster suggested for beehive coke oven. Proposed design not only can generate power, but also trap pollutants by a kind of wet scrubbing and produce byproducts like coal tar. Various associations of small-scale hard coke ovens and refractory industries had approached The Institution of Engineers (India), Dhanbad Local Centre. In this paper, the authors briefly present how waste heat can be converted to power, while absorbing pollutants in hydraulic main in the unique chimney detour method and producing coal tar, exuding clean gas.


2010 ◽  
Vol 90 (3) ◽  
pp. 189-206 ◽  
Author(s):  
Mila Pavlovic ◽  
Rajko Golic ◽  
Dejan Sabic

The territory of the municipality of Mali Zvornik is, from the aspect of morphology and spatial-functional structure, a heterogeneous area. It is located in the valley of the Drina River and in hilly-mountainous part of Podrinjske mountains. The area of the municipality is 184 km?, with 14076 inhabitants (2002). The importance of water resources for the development of the municipality, particularly of the hydropower plant (HPP) ?Zvornik?, is analyzed in this paper. Inadequate use of hydro-energetic potential, possibilities for construction of new hydropower plants and economic reasons for their construction are also emphasized. The priorities of the development of hydraulic engineering are defined in relation to morphological and hydrological conditions. They refer to increase of power of the HPP ?Zvornik? and construction of small-scale hydropower plants in hilly-mountainous part of municipality. Considering depopulation processes in the villages of Mali Zvornik, hydraulic engineering, together with agriculture, forestry, exploitation of mineral goods and tourism, can be one of the factors of demographic and economic revitalization of this area.


Author(s):  
Un Bong Baek ◽  
Hae Moo Lee ◽  
Yun-Hee Lee ◽  
Seung Hoon Nahm

A severe thermal stress occurs during start up/shutdown transients in thick walled components of high temperature power plants. Thus, a precise consideration of this issue is very important. Many researchers have studied low-cycle fatigue at high temperatures and small box-type electrical resistance furnaces have been developed for small-sized fatigue specimens. However, these small-scale electrical resistance furnaces need precise temperature calibrations because temperature control is difficult in a small space. Thus, a method for the temperature calibration of a box-type electrical resistance furnace is investigated and calibration procedures are proposed in this study.


IJOSTHE ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Ankeeta . ◽  
Vasant Acharya

Power generation through the renewable energy sources has become more viable and economical than the fossil fuel based power plants. By integrating small scale distributed energy resources, microgrids are being introduced as an alternative approach in generating electrical power at distribution voltage level. The power electronic interface provides the necessary flexibility, security and reliability of operation between micro-sources and the distribution system. The presence of non-linear and the unbalanced loads in the distribution system causes power quality issues in the Microgrid system. This paper explores and reviews different control strategies developed in the literature for the power quality enhancement in microgrids.


Author(s):  
Abdelbasset Krama ◽  
Mohamed Gharib ◽  
Shady S. Refaat ◽  
Alan Palazzolo

Abstract This paper presents a novel controller for drill string systems based on a super-twisting sliding mode theory. The aim is to eliminate the stick-slip vibration and maintain a constant drill string velocity at the desired reference value. The proposed controller inherently attenuates the torsional vibration while ensuring the stability and high efficiency of the drill string. A discontinuous lumped-parameter torsional model of vertical drill strings based on four components (rotary table, drill pipes, drill collars and drill bit) is considered. The Karnopp friction model is adopted to simulate the nonlinear bit-rock interaction phenomena. In order to provide a more accurate evaluation, the proposed drill string controller is implemented with the induction motor, a variable frequency drive and a gearbox to closely mirror the real environment of oil well drill strings. The increasing demand for prototyping and testing high-power plants in realistic and safe environments has led to the advancement of new types of experimental investigations without hurting the real system or building a small-scale prototype for testing. The dynamic performance of the proposed controller has been investigated with MATLAB software as well as in a novel hardware in-the-loop (HIL) testing platform. A power plant is modeled and implemented in the real-time simulator OPAL-RT 5600, whereas the controllers are implemented in the dSPACE 1103 control board. The results obtained through simulation and HIL testing demonstrate the feasibility and high performance of the proposed controller.


Author(s):  
Joe D. Craig ◽  
Carol R. Purvis

A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 429 ◽  
Author(s):  
Roberto Tascioni ◽  
Luca Cioccolanti ◽  
Luca Del Zotto ◽  
Emanuele Habib

In this paper four different detailed models of pipelines are proposed and compared to assess the thermal losses in small-scale concentrated solar combined heat and power plants. Indeed, previous numerical analyses carried out by some of the authors have revealed the high impact of pipelines on the performance of these plants because of their thermal inertia. Hence, in this work the proposed models are firstly compared to each other for varying temperature increase and mass flow rate. Such comparison shows that the one-dimensional (1D) longitudinal model is in good agreement with the results of the more detailed two-dimensional (2D) model at any temperature gradient for heat transfer fluid velocities higher than 0.1 m/s whilst the lumped model agrees only at velocities higher than 1 m/s. Then, the 1D longitudinal model is implemented in a quasi-steady-state Simulink model of an innovative microscale concentrated solar combined heat and power plant and its performances evaluated. Compared to the results obtained using the Simscape library model of the tube, the performances of the plant show appreciable discrepancies during the winter season. Indeed, whenever the longitudinal thermal gradient of the fluid inside the pipeline is high (as at part-load conditions in winter season), the lumped model becomes inaccurate with more than 20% of deviation of the thermal losses and 30% of the organic Rankine cycle (ORC) electric energy output with respect to the 1D longitudinal model. Therefore, the analysis proves that an hybrid model able to switch from a 1D longitudinal model to a zero-dimensional (0D) model with delay based on the fluid flow rate is recommended to obtain results accurate enough whilst limiting the computational efforts.


2015 ◽  
Vol 14 (2) ◽  
pp. 27
Author(s):  
I Made Gusmara Nusaman ◽  
I Wayan Sukerayasa ◽  
Rukmi Sari Hartati

The distributed generation technology or in this case abbreviated DG is a kind of power plants with small scale which prioritizes the utilization of renewable energy resources such as wind, water, solar, geothermal, ocean waves (Wave Energy), ocean currents (Ocean Current Energy), biomass, and biogass to produce the electrical energy with range of power generation between 1 kW-10 MW. One of the DG in Bali and still in operation is the garbage power plant which located in Suwung, South Denpasar. An analysis has been done using load flow analysis and reliability assessment to determine the effect of DG interconnection against the power losses and the level of reliability on the Serangan feeder. Based on the research that has been done, DG intercon-nection on the Serangan feeder decrease the power losses and increase the reliability and it can visible from the acquisition of SAIFI and SAIDI index which decreased. The best location of DG interconnection to get low of the power losses and the high level of reliability is at 97% from the total length of the feeder. At that location the power losses is decrease as big as 4.5 kW or 11.25% of the total power lossess without the DG interconnection and decrease of the SAIFI and SAIDI index respectively to 0.1 failure/customers/year and 1.4150 hour/ customer/year


Sign in / Sign up

Export Citation Format

Share Document