Synergistic Antibacterial Efficacy of Biogenic Synthesized Silver Nanoparticles using Ajuga bractosa with Standard Antibiotics: A Study Against Bacterial Pathogens

2020 ◽  
Vol 21 (3) ◽  
pp. 206-218 ◽  
Author(s):  
Sadia Nazer ◽  
Saiqa Andleeb ◽  
Shaukat Ali ◽  
Nazia Gulzar ◽  
Tariq Iqbal ◽  
...  

Background: Multi-drug resistance in bacterial pathogens is a major concern of today. Green synthesis technology is being used to cure infectious diseases. Objectives: The aim of the current research was to analyze the antibacterial, antioxidant, and phytochemical screening of green synthesized silver nanoparticles using Ajuga bracteosa. Methods: Extract of A. bracteosa was prepared by maceration technique. Silver nanoparticles were synthesized using A. bracteosa extract and were confirmed by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The antibacterial, anti-biofilm, cell proliferation inhibition, TLC-Bioautography, TLC-Spot screening, antioxidant, and phytochemical screening were also investigated. Results: UV-Vis spectrum and Scanning electron microscopy confirmed the synthesis of green nanoparticles at 400 nm with tube-like structures. FTIR spectrum showed that functional groups of nanoparticles have a role in capping and stability of AgNP. Agar well diffusion assay represented the maximum antibacterial effect of ABAgNPs against Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Pseudomonas aeruginosa at 0.10 g/mL concentration compared to ABaqu. Two types of interactions among nanoparticles, aqueous extract, and antibiotics (Synergistic and additive) were recorded against tested pathogens. Crystal violet, MTT, TLC-bio-autography, and spot screening supported the findings of the antibacterial assay. Highest antioxidant potential effect in ABaqu was 14.62% (DPPH) and 13.64% (ABTS) while 4.85% (DPPH) and 4.86% (ABTS) was recorded in ABAgNPs. Presence of phytochemical constituents showed pharmacological importance. Conclusion: It was concluded that green synthesis is an innovative technology in which natural products are conjugated with metallic particles and are used against infectious pathogens. The current research showed the significant use of green nanoparticles against etiological agents.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Toga Khalid Mohamed ◽  
Marivt Osman Widdatallah ◽  
Maida Musa Ali ◽  
Afraa Mubarak Alhaj ◽  
DhiaEldin AbdElmagied Elhag

An extremely worrying and alarming increase in the level of multiple drug resistance is reported in Sudan, in which bacterial strains are becoming resistant to many commonly available antibiotics. Eventually, it is becoming extremely difficult to treat debilitating infections. In search of promising solutions to this arising crisis, Camellia sinensis silver nanoparticles were synthesized using the green synthesis method. The synthesis of the Camellia sinensis silver nanoparticles is confirmed using analytical methods as ultraviolet-visible spectroscopy, X-ray diffractometer, and scanning electron microscopy. Using the ultraviolet-visible spectroscopy, an absorption band of 412 nm was observed. Furthermore, scanning electron microscopy revealed the presence of silver nanoparticles which fell within the range of 1–100 nm, and X-ray diffractometer analysis showed three intense peaks with a maximum intense peak at 24.3 theta. Nanoparticles distribution between 12 nm and 64 nm was observed with an average diameter of 18.115 nm. It also revealed orthorhombic-shaped nanoparticles. The synthesized nanoparticles showed antimicrobial activity against Staphylococcus aureus with a zone of inhibition of 7 mm, but none was detected against Escherichia coli. The obtained physicochemical properties were correlated with the antibacterial activity of the silver nanoparticles.


2017 ◽  
Vol 5 (2) ◽  
pp. 168-171 ◽  
Author(s):  
Janetha D Prakash Prakash ◽  
David Samuel P

The aim of this study was to synthesis of Silver Nanoparticles in the ethanol extract of Boucerosia procumbens. Nanoparticles are being used in many commercial applications. The synthesized Silver Nanoparticles were characterized by SEM (Scanning Electron Microscopy). It was found that ethanol silver iron can be reduced by ethanol plant extracts of plant to generate to extremely stable Silver Nanoparticles.Int. J. Appl. Sci. Biotechnol. Vol 5(2): 168-171


Author(s):  
Manasa Kumar Panda ◽  
Nabin Kumar Dhal ◽  
Manish Kumar ◽  
Pravat Manjari Mishra ◽  
Rajendra Kumar Behera

2019 ◽  
Vol 9 (3) ◽  
pp. 76-81 ◽  
Author(s):  
Pratibha Jinesh Shah ◽  
Ruchi Malik

Objective: Phyllanthus emblica L. or amla is known for its therapeutic properties. The aim of the present study was to evaluate the antibacterial activity of aqueous Phyllanthus emblica fruit extract (APE) against eight pathogenic cultures and its application in green synthesis of silver nanoparticles. Methods: APE was screened for the presence of phytochemicals and its antibacterial activity was evaluated by agar well diffusion assay. The minimum inhibitory concentration (MIC) was quantified by broth macrodilution technique, and minimum bactericidal concentration (MBC) was determined. Further, APE was used in the biological synthesis of silver nanoparticles (AgNPs), which were characterized by an Ultraviolet–visible (UV-VIS) spectroscopy and Field emission gun-scanning electron microscopy (FEG-SEM) techniques. The antibacterial activity of the AgNPs was screened by agar well diffusion assay. Results: The zone of inhibition (ZOI) for APE was found to be in the range of 10.7–21.3 mm, for varying concentrations. The MIC values were in the range of 12.5% - 50% (v/v) and the MBC values indicated that a concentration of 50% (v/v) APE could kill 75% (6/8) test cultures. The presence of AgNPs was confirmed by UV-VIS spectroscopy and the surface-plasmon resonance peak was observed at 420 nm. The FEG-SEM analysis revealed that the most of AgNPs were spherical in shape and had 30-40 nm size range. All the test cultures were inhibited by the AgNPs and the average ZOI measured 19.25±2.7 mm. Conclusion: Phyllanthus emblica fruit extract might have therapeutic significance against pathogens and it can be used for green synthesis of silver nanoparticles. Keywords: Phyllanthus emblica, MIC, MBC, silver nanoparticles, UV-VIS, FEG-SEM.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 510 ◽  
Author(s):  
May Reda ◽  
Akram Ashames ◽  
Zehra Edis ◽  
Samir Bloukh ◽  
Richie Bhandare ◽  
...  

Nano-sized metals have been introduced as a promising solution for microbial resistance to antimicrobial agents. Silver nanoparticles (AgNPs) have been proven to possess good antimicrobial activity. Green synthesis of AgNPs has been reported as safe, low cost and ecofriendly. This methodology uses extracts originating from different plants to reduce silver ions from AgNO3 into nano-sized particles. In this study, extracts of several plants including ginger, garlic, capsicum and their mixtures were successfully used to produce AgNPs. Numerous spectroscopic, light scattering and microscopic techniques were employed to characterize the synthesized AgNPs. Agar well diffusion assay was performed to investigate the antimicrobial activity of AgNPs. The biosynthesized AgNPs have spherical shape with a size range of 20–70 nm. Garlic extract, pure or in mixture with ginger extract, generated AgNPs of the smallest size. The presence of the plant-origin capping agents surrounding AgNPs was proven by Fourier-transform infrared spectroscopy. The AgNPs, at a concentration of 50 µg/mL, demonstrated potent antimicrobial activity against Staphyloccocus aureus, Escherichia coli and Candida albicans as indicated by the zones of. Our results revealed that AgNPs having potent antimicrobial activity could be prepared using different pure plant extracts and their mixtures.


Sign in / Sign up

Export Citation Format

Share Document