Hydraulic system based energy harvesting method from human walking induced backpack load motion

2021 ◽  
Vol 229 ◽  
pp. 113790
Author(s):  
Hu Shi ◽  
Shuai Luo ◽  
Jun Xu ◽  
Xuesong Mei
Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


2018 ◽  
Vol 1052 ◽  
pp. 012113
Author(s):  
R Kakihara ◽  
K Kariya ◽  
Y Matsushita ◽  
T Yoshimura ◽  
N Fujimura

2017 ◽  
Vol 28 (19) ◽  
pp. 2705-2716 ◽  
Author(s):  
Qing Ji ◽  
Seyed Mohammad Parvasi ◽  
Siu Chun Michael Ho ◽  
Matthew Franchek ◽  
Gangbing Song

Fully embedded devices and portable devices located in inaccessible areas may be constrained in terms of service lifespan due to limitations in battery capacity. Furthermore, conventional electromagnetic-based wireless charging may be difficult due to environmental interference. Thus, in this article, we present a method that can remotely charge such devices through piezo-generated stress waves that propagate along the structure hosting the device to be charged. However, in order to fully utilize such a conduit for transmitting energy, the dispersive and scattering nature of solid materials should be overcome. As a way to overcome this obstacle, the method innovatively applies the time reversal technique for use in energy harvesting. Through the time reversal technique, the energy transmitted by external actuators, instead of dispersing unhelpfully around the device, can be focused tightly at the energy harvesting component of the device. The method was successfully demonstrated on a copper pipe using four piezoelectric transducers. It was further found that time-reversed signals from multiple actuators can linearly superimpose to increase the amount of energy focused on the energy harvester, thus potentially solving problems related to distance and the signal attenuating properties of the material in the hosting structure. The method was also modeled and simulated using the finite element method through the commercial FE-package Abaqus. Results from both experiment and simulation matched well, thus demonstrating the viability of the wireless energy harvesting method.


2014 ◽  
Vol 7 (10) ◽  
pp. 3279-3283 ◽  
Author(s):  
Soon-Hyung Kwon ◽  
Junwoo Park ◽  
Won Keun Kim ◽  
YoungJun Yang ◽  
Eungkyu Lee ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tsung-Hsing Hsu ◽  
Supone Manakasettharn ◽  
J. Ashley Taylor ◽  
Tom Krupenkin

Author(s):  
Jinxiao Zhang ◽  
Haili Liu ◽  
Ya Wang

In this paper, a self-supported power conditioning circuit is developed for a footstep energy harvester, which consists of a monolithic multilayer piezoelectric stack with a force amplification frame to extract electricity from human walking locomotion. Based on a synchronized switch energy harvesting on inductance (SSHI) interface and a peak detector topology, the power conditioning circuit is designed to optimize the power flow from the piezoelectric stack to the energy storage device under real-time human walking excitation instead of a simple sine waveform input, as reported in most literatures. The unique properties of human walking locomotion and multilayer piezoelectric stack both impose complications for circuit design. Three common interface circuits, e.g. standard energy harvesting (SEH) circuit, series-SSHI and parallel-SSHI are compared in experiments to find which one is the best suit for the real-time-footstep energy harvester. Experimental results show that the use of parallel-SSHI circuit interface produces 85% more power than the SEH counterpart, while the use of series-SSHI circuit demonstrates the similar performance in comparison to the SEH interface. The reasons for such a huge efficiency improvement by using the parallel-SSHI interface are detailed in this paper.


Sign in / Sign up

Export Citation Format

Share Document