Transient exergetic efficiency and moisture loss analysis of forced convection drying with and without electrohydrodynamic enhancement

Energy ◽  
2015 ◽  
Vol 89 ◽  
pp. 519-527 ◽  
Author(s):  
Erik Bardy ◽  
Merouane Hamdi ◽  
Michel Havet ◽  
Olivier Rouaud
Author(s):  
Erik Bardy ◽  
Merouane Hamdi ◽  
Michel Havet ◽  
Olivier Rouaud

Electrohydrodynamic (EHD) drying is a novel drying method used to enhance forced convective drying by using a wire-electrode to create an electrostatic field. In this study, it was hypothesized that an EHD enhanced forced convective drying process will not only increase the drying rate, but also the exergetic efficiency over time. A transient exergetic efficiency was defined as the ratio of the exergy use rate in the removing of moisture from the drying product, to the exergy rate of the drying air supplied. In the case of EHD enhanced forced convection, the exergy rate supplied by the wire electrode was also accounted for. Forced convection drying experiments were run on a test specimen simulating a food product (methylcellulose gel) using an air flow channel with and without EHD enhancement with varying air flow velocities. Initial results show that the moisutre loss rate of the methylcellulose gel increased with the application of the electrostatic field. In addition, for low velocities, the exergetic efficiency of EHD enhanced forced convection was higher for the first few hours of drying as compared to conventional forced convection. The exergetic efficiency of both conventional and EHD enhanced forced convection converged at greater air flow velocities.


Author(s):  
P.E. Batson

Use of the STEM to obtain precise electronic information has been hampered by the lack of energy loss analysis capable of a resolution and accuracy comparable to the 0.3eV energy width of the Field Emission Source. Recent work by Park, et. al. and earlier by Crewe, et. al. have promised magnetic sector devices that are capable of about 0.75eV resolution at collection angles (about 15mR) which are great enough to allow efficient use of the STEM probe current. These devices are also capable of 0.3eV resolution at smaller collection angles (4-5mR). The problem that arises, however, lies in the fact that, even with the collection efficiency approaching 1.0, several minutes of collection time are necessary for a good definition of a typical core loss or electronic transition. This is a result of the relatively small total beam current (1-10nA) that is available in the dedicated STEM. During this acquisition time, the STEM acceleration voltage may fluctuate by as much as 0.5-1.0V.


2020 ◽  
Vol 63 (9) ◽  
pp. 2921-2929
Author(s):  
Alan H. Shikani ◽  
Elamin M. Elamin ◽  
Andrew C. Miller

Purpose Tracheostomy patients face many adversities including loss of phonation and essential airway functions including air filtering, warming, and humidification. Heat and moisture exchangers (HMEs) facilitate humidification and filtering of inspired air. The Shikani HME (S-HME) is a novel turbulent airflow HME that may be used in-line with the Shikani Speaking Valve (SSV), allowing for uniquely preserved phonation during humidification. The aims of this study were to (a) compare the airflow resistance ( R airflow ) and humidification efficiency of the S-HME and the Mallinckrodt Tracheolife II tracheostomy HME (M-HME) when dry (time zero) and wet (after 24 hr) and (b) determine if in-line application of the S-HME with a tracheostomy speaking valve significantly increases R airflow over a tracheostomy speaking valve alone (whether SSV or Passy Muir Valve [PMV]). Method A prospective observational ex vivo study was conducted using a pneumotachometer lung simulation unit to measure airflow ( Q ) amplitude and R airflow , as indicated by a pressure drop ( P Drop ) across the device (S-HME, M-HME, SSV + S-HME, and PMV). Additionally, P Drop was studied for the S-HME and M-HME when dry at time zero (T 0 ) and after 24 hr of moisture testing (T 24 ) at Q of 0.5, 1, and 1.5 L/s. Results R airflow was significantly less for the S-HME than M-HME (T 0 and T 24 ). R airflow of the SSV + S-HME in series did not significant increase R airflow over the SSV or PMV alone. Moisture loss efficiency trended toward greater efficiency for the S-HME; however, the difference was not statistically significant. Conclusions The turbulent flow S-HME provides heat and moisture exchange with similar or greater efficacy than the widely used laminar airflow M-HME, but with significantly lower resistance. The S-HME also allows the innovative advantage of in-line use with the SSV, hence allowing concurrent humidification and phonation during application, without having to manipulate either device.


2019 ◽  
pp. 90-111 ◽  
Author(s):  
Natalia S. Pavlova ◽  
Andrey Е. Shastitko

The article deals with the problem of determining market boundaries for antitrust law enforcement in the field of telecommunications. An empirical approach has been proposed for determining the product boundaries of the market in the area of mass distribution of messages, taking into account the comparative characteristics of the types and methods of notification (informing) of end users; the possibilities of switching from one way of informing to another, including the evolution of such opportunities under the influence of technological changes; switching between different notification methods. Based on the use of surveys of customers of sending SMS messages, it is shown that the product boundaries should include not only sending messages via SMS, but also e-mail, instant messengers, Push notifications and voice information. The paper illustrates the possibilities of applying the method of critical loss analysis to determining the boundaries of markets based on a mixture of surveys and economic modeling.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


Sign in / Sign up

Export Citation Format

Share Document